RadChem 2010

Contribution ID: 75

Type: Poster

Applicability of k₀-based neutron activation analysis using a Compton suppression γ-ray spectrometer

Tuesday, 20 April 2010 11:45 (20 minutes)

Compton suppression system (CSS) in conjunction with γ -ray spectrometer allows to lower the detection limits for certain elements by reducing the background levels in the acquired γ -ray spectra. The calibration of CSS for use in the k₀-based neutron activation analysis (k₀-NAA) has been performed in normal mode and applied to Compton suppression mode. In this case, efficiency data are only applied to radionuclides that emit non-coincident γ -rays. In this work the applicability of the k₀-NAA method using CSS (k₀-CSNAA) in Compton suppression mode for radionuclides that emit coincident γ -rays is tested. The SMELS (a synthetic multi-element standard) consisting of nuclides with different γ -ray energy and Q₀ values was used to evaluate the Compton suppression factor for several radionuclides of interest, e.g. ⁶⁰Co, ⁵¹Cr, ¹⁵²Eu, ⁵⁹Fe, ⁷⁵Se, ⁴⁶Sc and ⁸⁵Sr. The applicability of k₀-CSNAA has been tested by analyzing several reference materials, i.e. Coal Fly Ash (NIST-SRM-1633a), Soil (IAEA-Soil-7) and Lichen Material (IAEA-CRM-336). Preliminary results of the test are presented and discussed.

Primary author: Dr HO, Dung Manh (Technological and Nuclear Institute, Sacavem, Portugal)

Co-authors: Dr BEASLEY, Daniel (Technological and Nuclear Institute, Sacavem, Portugal); Dr FREITAS, Maria do Carmo (Technological and Nuclear Institute, Sacavem, Portugal); Mr CANHA, Nuno (Technological and Nuclear Institute, Sacavem, Portugal)

Presenter: Dr HO, Dung Manh (Technological and Nuclear Institute, Sacavem, Portugal)

Session Classification: Poster Session - Nuclear Analytical Methods

Track Classification: Nuclear Analytical Methods