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How can Computer Vision help us in solving physics problems?

Computer Vision and jet physics have a lot of things in common
In jet physics we usually deal with:
Observables that lie in high-dimensional space and that are highly nonlinear
With processes that we can't describe using "simple" mathematics
Many factors of variation in our data
Detectors that are in principle high-speed 3D/2D cameras

But there are also differences
In comparison to Computer Vision the following is missing:
We don't have access to reliable ground truth for our data
Our data is usually presented in the form of aggregated statistic (e.g. histogram)
We can synthesize almost infinite amounts of realistic data

How exactly can we use advancements in Computer Vision for particle physics?



Computer Vision Tasks
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Machine Learning

To use recent advancements in Computer Vision we need Machine Learning
Now we shall briefly introduce main ideas of supervised learning
Assume that we have an ordered pair (x;, y;):-,, which is called dataset

Our goal is to construct functional mapping f: X - Y

Assume that we have chosen parametric function

We will use loss function L(f (x; 6),y) to quantify model performance
For example one can use quadratic loss function ||f(x; 0) — y||5

Our goal is then to find optimal parameters 6*, which are given by

arggmin L(f(x;0),y)

This parametric function can take many forms

Linear Model
Support Vector Machine
Neural Network

Further on we will focus on convolutional neural networks (ConvNets)



Convolutional Neural Networks

Neural Network Is a parametric function composed of many layers
F(x; W,b) = f,,(hy_1; Wy, by) 0 -0 f;(x; Wy, by)
Here f; Is a layer
It first computes affine transformation/convolution between weights and input
It is then followed by nonlinearity, nowadays usually max(x, 0)

We then train our neural network using backpropagation algorithm with SGD
In first we use chain rule to compute derivatives of loss function w.r.t parameters
Then we update our parameters via 871 = 6% — nVL(f (x; ©),y)

01

00 1{4]314/1
0]0 1[2]4]3]3
0]0 ="11{2[3[4]1
0]0 1{3]3]1]1
0|1 313[1[1]0
K

I x K



Convolutional Neural Network as a Feature Extractor
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Previous Work on Computer Vision for Jet Physics

Previous work was mostly dealing with jet tagging
Many of the processes were probed using jet image technique, for example:
L. de Oliveira et, al, JHEP 07 (2016) 069 — tagging of boosted W= vs QCD jets
P. T. Komiske et. al, JHEP 01 (2017) 110 — quark vs gluon jet discrimination
List continues...

For the tagging of b/c jets Natural Language Processing models are being used:
CMS and ATLAS use recurrent neural network taggers
Previous observables can be desribed using jet-shape observables (n, ¢, p;)
HF jets require secondary vertex information e.t.c.

Here I’'m going to show our efforts towards object detection methods:
We can use image of the whole event as an input
Network will implicitly learn rules of anti-k; clustering
Model can take into account other factors in the event (for example multiplicity)



Data Generation Pipeline

We simulate our sensor via TH2F histogram modelling (n, ¢, p1) space
Pythia8 is initialized with HardQCD:all = on and SoftQCD:nonDiffractive = on

HIN and pIe* are binned so that total jet p distribution is uniform

Event is generated and only final-state particles with appropriate cutoffs are accepted
FastJet is used to cluster events with anti-k, algorithm using R = 0.4

Event and jet masks are then dumped into the TTree

Each .root files are then converted into HDF5 file

For this talk the train/val/test datasets are splitted as 1M/100K/125K events

[n|< 1 pr>02GeV | p/ > 10 GeV

Selection criteria for particles and jets




Model training

We use Mask R-CNN implementation by Matterport

ResNet18 model is used as backend because the data are visually simple

Mean pixel value of 0.0022 is subtracted from every image

Model is trained from scratch
Initial LR is set to 0.0025 with stepwise decay at predefined points using Momentum SGD
We train for 300,000 iterations in total, with model evaluation every 200 iterations
Model weights are initialized to orthogonal matrices (A. M. Saxe et. al, 2013)
Each training run takes ~30 hours to complete on 1 Nvidia Titan Xp
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Mask R-CNN - K. He et. al, arXiv:1703.06870 [cs.CV]
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Problem - Discontinuity in azimuthal coordinate

Ground Truth and Detections for missed detections Ground Truth and Detections for missed detections
GT=green, pred=red, captions: score/loU GT=qgreen, pred=red, captions: score/loU




Solving azimuthal discontinuity problem

The following procedure was proposed:

Each image is internally represented by X € R148%128

Masks are represented by M € {0, 1}148*128%Njet

We take each mask M; € R148*148 "which represents single jet
We extend ¢ coordinate from (0, 27) to (0, 37) for image (R*%%*1°2) and mask
Using binary dilation operator we enlarge the mask
Then the areas of two connected regions are calculated
Finally we take AND between biggest region and original mask
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Efficiency calculation

Efficiency calculation is calculated in each p; bin as #Found jets/#All jets
We also use simplified matching procedure:
loU between ground-truth jet and predicted jet shall be greater than 0.3
Turns out the algorithm is plagued by the false-positive detections
For 114754 jets in 112500 events we get 6000 false-positive jets
We provide two efficiency calculations:
First excludes all events where false-positive jets were detected (“lower bound”)

Second calculates efficiency of all jets, discarding false-positives

Area of Overlap

Red — predicted jet loU =
Green — ground truth jet Area of Union

Credit: PylmageSearch



Efficiency dependent on jet transverse momentum
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Jet p distribution reconstructed by Mask R-CNN
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Detection Examples

Ground Truth and Detections for loU levels from 1,09, ..., 0 Ground Truth and Detections for loU levels from 1,09, ..., 0
GT=green, pred=red, captions: score/loU GT=green, pred=red, captions: score/loU
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Conclusion and Future Work

We've managed to show that object detection algorithms might be suitable for jet physics
Model allows us to identify jets directly from single event image
It also implicitly learns rules of anti-kT clustering
Further studies are needed:
Optimal jet matching technique shall be identified
Is there a way to increase efficiency of this method?
Possible applications?
For example, teaching algorithm how unquenched jet signatures look like and then
applying it directly to the heavy-ion data. What will response look like"?
Can we use this algorithm for event selection?



