# Laserové urychlování plazmovou vlnou

### David Grund

#### Fakulta jaderná a fyzikálně inženýrská ${\rm \check{C}VUT}$

15. ledna2019

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

1/15

15. ledna 2019

David Grund (FJFI ČVUT)

#### Zadání práce

Studium stability vzájemného zpoždění mezi dvěma laserovými impulzy pro realizaci dvoubublinového injektoru elektronového svazku

- $\bullet\,$ Fyzika a technika laserového urychlování plazmovou vlnou
- Jednotlivá schémata injekce elektronových svazků
- Dvojbublinové injekční schéma
- Naměřit stabilitu vzájemného zpoždění mezi dvěma laserovými impulzy

SQ (V

### Atom v poli intenzivního laseru I

- CPA: produkce vysoce intenzivních laserových impulsů
  - Časové prodloužení, zesílení, opětovné roztažení (zamezí poškození aktivního média)
- Atomic intensity:  $I_a \approx 10^{16} \text{ W/m}^2 \rightarrow \text{garance tvorby plazmatu}$
- Při  $10^{10} \text{ W/m}^2 < I < I_a$ : multiphoton ionization
  - Rozšíření klasického fotoefektu pro intenzivní záření
  - Absorpce nfotonů naráz, uvolnění  $e^-$
- Above-threshold ionization
  - sfotonů navíc $\rightarrow$ kinetická energie

$$E_f = (n+s)\hbar\omega - E_{ion} \tag{1}$$

SQ Q

3/15

15. ledna 2019

#### • Tunelling ionization

- Takové intenzity impulsů, že je přímo narušen ("pokřiven") elektrický potenciál jádra
- Gamma parametr

$$\gamma = \omega_L \sqrt{\frac{2E_{ion}}{I_L}} \tag{2}$$

- Pro $\gamma < 1$ (silná pole, velké vlnové délky): tunelová ionizace
- Pro $\gamma>1:$  multifotonová ionizace
- QM: potlačení bariéry, konečná pravděpodobnost protunelování elektronu, začíná hrát velkou roli už od $I\approx 10^{14}~{\rm W/m^2}$

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 



- a) Multifotonová
- b) Nadprahová multifotonová
- c) Tunelová

=

AP.

< □ ▶

E

5900

### Fyzika laserového urychlování I

- Souhrnně Laser-Plasma Acceleration (LPA)
  - Lineární / nelineární režim dle velikosti $a_0$
  - Particle in Cell (PIC) simulace

#### • Laser Wakefield Acceleration (Tajima & Dawson, 1979)

- Preionizované plazma
- Krátký (<br/> $\lesssim 1~{\rm ps}),$ vysoce intenzivní laserový impul<br/>s ( $\gtrsim 10^{17}~{\rm W/m^2})$ s délkou $L\sim\lambda_p$ v podkritickém plazmatu
- Ponderomotorická síla vypuzuje elektrony z oblastí vysoké intenzity pole (u iontů efekt zanedbatelný)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆

15. ledna 2019

500

6/15

- Elektrony jsou pak zpětně přitahovány kladnými náboj<br/>i $\rightarrow$ oscilace, vznik plazmové vlny
- Při splnění  $L < \lambda_p/2$  a dostatečné intenzitě laseru  $a_0 >> 2$  $\rightarrow$  **bubble regime**

### Fyzika laserového urychlování II



=

< □ ▶

E

590

### Další techniky LPA

#### • Plasma beat wave acceleration (PBWA) $\rightarrow$ b)

- Rezonance dvou laserových frekvencí  $\omega_1, \, \omega_2 \, \text{tak}, \, \text{že} \, \omega_1 \omega_2 \approx \omega_p$
- Beat wave = řetěz stejně širokých, rovnoměrně prostorově separovaných pulsů
- Tvorba plazmové vlny řetězem impulsů  $\rightarrow$  c)
  - Možnost optimalizace šířek pulzů a jejich prostorové vzdálenosti k dosažení největší možné amplitudy plazmové vlny

SQA

▲□▶ ▲□▶ ▲□▶ ▲□▶

Výhody:

- Možnost dosáhnout vysokých gradientů urychlovacího pole (100 MV/m vs řadově až stovky GV/m pro $n_0\approx 10^{18})$
- Možnost produkce extrémně krátkých elektronových svazků  $(t<\lambda_p/c,\,{\rm tj.}\,<100~{\rm fs})$
- Kompaktní rozměry

Omezení:

• Electron dephasing: elektron začne být po určité době vlnou zpomalován (dephasing length)

15. ledna 2019

э.

SQA

9/15

• Možnost laser-plazmových nestabilit

## Injekce elektronů I

• Má přímý vliv na výslednou kvalitu urychleného svazku, např. na emitanci

#### • Self-injection

- Z důvodu dynamického vývoje vlny; některé elektrony z povrchu bubliny proniknou do urychlující fáze vlny
- Obtížné kontrolovat, nemusí být stabilní
- Kontinuální self-injekce může vést ke zhroucení bubliny

#### • Density down-ramp injection

• Využívá závislosti fázové rychlosti vlny na hustotě plazmatu:

$$v_p = \frac{c}{1 + \frac{\xi}{k_p} \frac{\mathrm{d}k_p}{\mathrm{d}x}} \tag{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶

•  $\xi$  = vzdálenost za laserovým pulzem,  $\xi < 0; \, k_p = \omega_p/c$ 

• 
$$v_p$$
 klesá pro  $\frac{\mathrm{d}k_p}{\mathrm{d}x} < 0 \Leftrightarrow \frac{\mathrm{d}n}{\mathrm{d}x} < 0$ 

• Při poklesnutí rychlosti může nastat injekce

3

SQA

#### • Ionization injection

- Využívá mix plynů s vyšším a nižším protonovým číslem  ${\cal Z}$
- Do urychlovací fáze plazmové vlny se injektují elektrony z vnitřních energetických hladin

### • Optical injection

- Využívá dodatečných impulzů, které dodávají elektrony hlavnímu, tvořícímu brázdovou vlnu (pump + injection pulses)
- kolineární: jdoucí ve stejném směru / proti sobě; kolmé impulsy



 $\nabla \circ \circ$ 

### Dvojbublinové schéma

- Injektující puls: vlastní bublina,  $a_0\gtrsim 1,8$
- Lokalizace prvního pulzu: jeho elektronová slupka leží v oblasti self-injekce hlavního pulzu
- 2D PIC simulace, zpoždění mezi pulzy 75 fs:



 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

### Experiment

- Potřeba pro realizaci injekce se dvěma za sebou jdoucími pulzy (injection by preceding pulse IPP)
- Upravení Mach–Zehnderova interferometru
- Michelsonův interferometr nevhodný
- Postup:
  - Rozdělení ultrasekundového laserového impulzu do dvou po sobě jdoucích
  - Časová separace  $\approx 65$  fs; délky cca 25 fs
  - Nutné správné proložení optických drah!
  - Zesílení obou impulzů; ve vhodném poměru (injektující pulz slabší)

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

13 / 15

15. ledna 2019

• Zachování požadované časové separace?

### Adaptovaný Mach-Zehnderův interferometr

• Optická lavice  $\rightarrow$ rozdíl drah cc<br/>a $20~\mu{\rm m}$ 



< □ ▶

E

SQ (V

### Zdroje

- P. Gibbon. Short pulse laser interactions with matter: Chapter 2 -Interaction with Single Atoms. London : Imperial College Press, 2005.
- E. Esarey, C. B. Schroeder, and W. P. Leemans. Physics of laser-driven plasma-based electron accelerators. *Rev. Mod. Phys.*, 81:1229–1285, Aug 2009.
- H. Schwoerer. Particle acceleration with lasers. S. Afr. j. sci. [online]. 2008, vol.104, n.7-8, pp.299-304.

э.

 $\mathcal{A} \mathcal{A} \mathcal{A}$