D[±] Meson Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV at STAR

Robert Líčeník WEJČF 2019

Outline

****** ***********

- 1. Physics Motivation
- 2. Heavy-ion Collisions and QGP
- 3. STAR Experiment
- 4. D^{\pm} Analysis in Au+Au Collisions
- 5. Improvement Using TMVA
- 6. Summary and Outlook

1 - Physics Motivation

Physics Motivation

- We want to study early Universe
- QGP present at $\tau \sim 10^{-6}$ s
- Created today in A+A collisions

nflatior

Key

QCD Phase Diagram

- Matter can exist in multiple phases
- QGP at high temperatures
- Phase transition at T~170 MeV
- Smooth crossover observed
- Critical point? BES II

2 - Heavy-ion Collisions and QGP

Physics of Heavy-Ion Collisions

****** ***********

- Evolution governed by centrality
- Hard scattering between partons
- QGP hydrodynamic evolution
- Hadronization
- Chemical and kinetic freeze-out
- Final products $(\pi, K, p, l^{\pm}, \gamma)$

Participants

Spectators.

Quark-Gluon Plasma

- Hottest, densest, least viscous, most vortical superfluid
- Partons are quasi-free
- Confirmed in 2004 at RHIC
- Impossible to observe directly
- We study interactions within the medium
- Probes: jets, collectivity, quarkonia, energy loss,...

Parton Energy Loss

- High-energy partons lose energy in QGP via elastic collisions and gluon radiation
- Yield at specific $\boldsymbol{p}_{\scriptscriptstyle T}$ modified
- Nuclear modification factor:

$$R_{\rm AA} = \frac{\frac{d^2 N_{\rm AA}}{dp_{\rm T} dy}}{\langle N_{\rm coll} \rangle \times \frac{d^2 N_{\rm pp}}{dp_{\rm T} dy}}$$

3 - STAR Experiment

STAR Experiment

- Located at Brookhaven National Lab, USA
- TPC Time Projection Chamber
 - Tracking
 - \circ $\;$ Particle identification via energy loss (dE/dx) $\;$
- TOF Time-of-Flight detector
 - \circ ~ Particle identification via flight time (1/ β)
 - \circ $\;$ Extend identification at p > 1 GeV/c $\;$

STAR Experiment

- Located at Brookhaven National Lab, USA
- TPC Time Projection Chamber
 - Tracking
 - Particle identification via energy loss (dE/dx)
- TOF Time-of-Flight detector
 - \circ $\$ Particle identification via flight time (1/ β)
 - \circ $\;$ Extend identification at p > 1 GeV/c
- HFT Heavy Flavor Tracker
 - \circ operating in 2014-2016
 - 2 layers of silicon pixel and 2 layers of strip detectors (one not used in 2014)
 - $\circ~$ excellent spatial resolution (57 46 μm for 750 MeV/c kaons)
 - $\circ~$ topological reconstruction of open-charm hadrons eg. ${\rm A_c},~{\rm D^{\pm}},~{\rm D^{0}},~{\rm D_s}$

140

 σ_{XY} (µm)

4 - D[±] Analysis in Au+Au Collisions

$D^{\pm} \ Meson$

- D^{\pm} production one way to study c quark interaction in OGP Quark content $c\overline{d}, \overline{c}d$
- c quarks created during hard scattering
- Significant energy loss
 observed in D⁰ production

Quark content	$c\overline{d}, \overline{c}d$
$m_{\mathrm{D}^{\pm}} \; \mathrm{[MeV}/c^2]$	1869.5 ± 0.4
au [ps]	1.040 ± 0.007
λ [µm]	312 ± 2
Decay channel	$D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$
BR [%]	8.98 ± 0.28

Analysis Method

- 860 M minimum-bias Au+Au $\sqrt{s_{NN}}$ = 200 GeV ^{daughter1}
- $D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$, BR: (8.98±0.28) %
- Other $K\pi\pi$ combinations background
- PID using TPC, TOF when available
- Topological variables:
 - \circ DCA of K and π to the primary vertex
 - \circ D^{\pm} decay length λ
 - \circ $\$ Pointing angle $\$ cos θ
 - \circ Maximum distance of pair vertices ($\vartriangle_{max})$
 - $\circ~$ DCA of Km and mm pairs (DCA_{12} , DCA_{23} , DCA_{13})

Selection Criteria

			p	daug	hter 2
Type	Cut	Value(s)	daughter 1	1	1
Event Selection	Primary vertex (PV) position	$ V_{\rm z} < 6 { m cm}$			
	PV positions from TPC and VPD	$ V_{\rm z} - V_{\rm z}^{\rm VPD} < 3 \ \rm cm$			daughtar 2
Track Selection	TPC Hits	$N_{\rm TPC} > 20$			
	HFT Hits	2 PXL and IST			
	Pseudorapidity	$ \eta < 1$		DCA ₂₃	_
	Daughter transverse momentum	$p_{ m T} > 0.5~{ m GeV}/c$		and a second second	
Particle Identification	TPC energy loss - pions	$ n_{\sigma}^{\pi} < 3$	DCA ₁₂		
	TPC energy loss - kaons	$ n_{\sigma}^{\rm K} < 2$	sv SV		
	Particle flight time	$ \frac{1}{\beta} - \frac{1}{\beta_{\rm th}} < 0.03$		DCA ₁₃	
Topological Cuts	Daughter pairs DCA	$DCA_{\rm pair} < 80 \ \mu {\rm m}$			
	Decay length	$30 < \lambda < 2000 \ \mu m$			
	Maximum distance of pair vertices	$\Delta_{\rm max} < 200 \ \mu {\rm m}$			
	Pointing angle	$\cos\theta > 0.998$] / // :		\
	Pion DCA to PV	$DCA_{\pi} > 100 \ \mu m$	D^{\pm} flight path /		
	Kaon DCA to PV	$DCA_{\rm K} > 80 \ \mu{ m m}$			16
			PV 🔘 ;		

daughter 2

Raw Yield Extraction

- Estimate background from wrong-signs
- Scale background by (# of correct-signs)/(# of wrong-signs) outside 4 σ of signal peak
 Correct-sign Wrong-sign
 THIS THESIS
- Subtract background

Raw Yield Extraction

- Scale background by (# of correct-signs)/(# of wrong-signs)
 outside 4 σ of signal peak
 Outside 4 σ of signal peak
- Subtract background
- Obtain raw yield using bin counting $\frac{1}{2}$ method inside 3 σ
- Calculate D[±] signal significance
- Significance varies between 3.2 and 13.7 in 0-10 % centrality bin
- Also studied 10-40, 40-80, 0-80 % in the 1 < p_τ < 8 GeV/c range

Yield Correction

• Raw Yield -> Invariant Yield

Detector AcceptanceXEfficiency

- Data-driven Fast Simulator
 - \circ Obtain the ${\rm V}_{\rm Z}$ distribution (data)
 - $\circ~$ Generate D^{\pm} mesons flat in $p_{_{T}}$ and y
 - \circ $\,$ Decay to $K^{{\scriptscriptstyle T}}\pi^{\pm}\pi^{\pm}$ using EvtGen $\,$
 - \circ $\,$ Smear momentum (K and π embedding)
 - \circ Smear DCA for daughters (data)
 - Apply HFT matching efficiency (data)
 - Apply TPC reconstruction efficiency (embedding)
 - \circ $\;$ Reconstruct D^{\pm} with analysis cuts
- Validated by HIJING+GEANT4 within 5 %

$\boldsymbol{p}_{\scriptscriptstyle T}$ Point Correction

- p_{T} points not in correct place
- Levy fit to the spectrum

$$f(p_{\rm T}) = \frac{1}{2\pi} \frac{{\rm d}N}{{\rm d}y} \cdot \frac{(n-1)(n-2)}{(nT+m)(m(n-1)+nT)} \cdot \left(\frac{nT+\sqrt{p_T^2+m^2}}{nT+m}\right)$$

- Iterative process to find mean value inside bins
- Larger effect for wider bins

D[±] Spectra

STAR Au+Au 2014

Centrality: 10-40 %

D[±](×0.565/0.246)

Levy Fit to D⁰

D⁰

 D^{\pm} - this thesis (×0.565/0.246)

9 10 p_T [GeV/c]

8

√s_{NN} = 200 GeV

D[±] Spectra

9 10 p_T [GeV/c]

8

D[±] Nuclear Modification Factor

• Spectra compared to scaled p+p reference

Centrality [%]	$N_{\rm coll}$ [-]
0 - 10	959.65 ± 36.53
10 - 40	401.80 ± 54.50
40 - 80	58.07 ± 33.02
0 - 80	373.00 ± 73.45

- Significant D[±] production suppression observed
- Consistent with D^0 results

D[±] Nuclear Modification Factor

- Suppression also observed in more peripheral collisions
- Significant energy losses of charm quarks inside QGP
- Precise measurement enabled by HFT

5 - Improvement Using TMVA

Improvement Using TMVA:BDT

- we use Boosted Decision Trees (BDT) to improve signal significance
- training signal sample from FastSim (8.37 M)
- background from data wrong-signs (8.41 M)
- variables used for optimization:
 - $\circ \text{ DCA}_{\text{K}}, \text{ DCA}_{\text{m12}}, \text{ DCA}_{\text{pair}}$
 - \circ cos θ , λ
- 850 trees with depth 3 (standard settings) boosting
- dependence on variables boiled down to 1 number BDT response
 (-1 = pure background, 1 = pure signal in ideal case)

Topological Variable Distributions

28

29

Significance Scan

• How to select optimal BDT cut value?

Comparison: Rectangular Cuts vs. TMVA:BDT

- No peak in wrong-signs
- Largest improvement of Sig. in the lowest p_{τ}

Comparison: Rectangular Cuts vs. TMVA:BDT

6 - Summary and Outlook

Summary

- QGP is created in high-energy heavy-ion collisions
- Charm quarks serve as a probe inside the medium
- HFT allowed precise reconstruction of D^{\pm} at STAR
- Results indicate significant energy loss of c quark in the QGP
- Signal significance can be substantially improved by application of TMVA:BDT, especially at low p_{τ}

Outlook

- Apply TMVA:BDT on all available $p_{_{\rm T}}$ and centrality bins
- Calculate reconstruction efficiency with BDT
- Precisely determine systematic errors
- Combine with 2016 results and publish

BACKUP

Correlation Matrices

Correlation Matrix (background)

Fri Nov 23 11:58:24 2018

Fri Nov 23 11:59:12 2018

Overtraining check

TMVA overtraining check for classifier: BDT

