

Production of open-charm hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV measured by the STAR experiment

Jan Vanek

Zimní škola FJFI 2019, Bílý Potok

14.01.2019

Jan Vanek: Open-charm production at STAR

OUTLINE

INTRODUCTION

- Motivation for open-charm hadron measurements in heavy-ion collisions
- STAR detector
- Event and track selection
- Open-charm hadrons measurements with the HFT

OPEN CHARM MEASUREMENTS

- Energy loss in the QGP
 - D[±] and D⁰ nuclear modification factor
- Collectivity
 - D⁰ elliptic flow
 - D⁰ directed flow
- Charm quark hadronization
 - D_s/D⁰ ratio
 - Λ_c/D^0 ratio

14.01.201

PHYSICS MOTIVATION

- At RHIC energies, charm and bottom quarks are produced predominantly through partonic hard scatterings at early stage of A+A collisions
 - They experience the whole evolution of the system which makes them an excellent probe of the QGP
 - Observed open-charm hadrons come primarily from initially produced charm quarks with small feedown from bottom decays
- Study of various open-charm hadron species in A+A collisions is essential for understanding the QGP properties as well as charm quark hadronization in the medium
 - Energy loss in the medium
 - D⁰, D[±] nuclear modification factor
 - Initial tilt of the bulk + initial electromagnetic field
 - D⁰ directed flow
 - Heavy quark diffusion coefficient
 - D⁰ elliptic flow
 - Hadronization
 - $\mathbf{D}_{s}, \Lambda_{c}$ production

STAR DETECTOR

- Solenoidal Tracker At RHIC
- Heavy Flavor Tracker (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers, Strip detectors 2 outer layers
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF), centrality (TPC)
- Vertex Position Detector (VPD)
 - Vertex position along the beam axis

Time Projection Chamber Time Of Flight 140 \mathbf{VPD} $p+\overline{p}$ 120 100 σ_{XY} (µm) 80 60 40 20 (a) 0.5 1.5 0 1 2 **Heavy Flavor Tracker** Total Momentum p (GeV/c) PRL 118 212301 (2017) 14.01.2019 Jan Vanek: Open-charm production at STAR

Zero Degree Calorimeter

EVENT AND TRACK SELECTION

- Event selection cuts
 - Position of primary vertex along the beam axis (TPC, VPD)
- Track quality cuts
 - *p*_T suppresses combinatorial background from low *p*_T particles
 - $|\eta| < 1$ detector acceptance
 - Minimum number of hits in the TPC for each track – good track quality
- Particle identification (PID)
 - TPC energy loss of charged particles in the TPC gas
 - TOF velocity of the charged particles
- Topological cuts
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background

EVENT AND TRACK SELECTION

- Event selection cuts
 - Position of primary vertex along the beam axis (TPC, VPD)
- Track quality cuts
 - *p*_T suppresses combinatorial background from low *p*_T particles
 - $|\eta| < 1$ detector acceptance
 - Minimum number of hits in the TPC for each track – good track quality
- Particle identification (PID)
 - TPC energy loss of charged particles in the TPC gas
 - TOF velocity of the charged particles
- Topological cuts
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background

EVENT AND TRACK SELECTION

- Event selection cuts
 - Position of primary vertex along the beam axis (TPC, VPD)
- Track quality cuts
 - *p*_T suppresses combinatorial background from low *p*_T particles
 - $|\eta| < 1$ detector acceptance
 - Minimum number of hits in the TPC for each track – good track quality
- Particle identification (PID)
 - TPC energy loss of charged particles in the TPC gas
 - TOF velocity of the charged particles
- Topological cuts
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background

OPEN-CHARM MEASUREMENTS WITH THE HFT

- Decay channels used*:
 - $D^+ \rightarrow K^- \pi^+ \pi^+$ $c\tau = (311.8 \pm 2.1) \ \mu m$ $BR = (8.98 \pm 0.28) \ \%$
 - $D^0 \rightarrow K^- \pi^+$ $c\tau = (122.9 \pm 0.4) \ \mu m$ $BR = (3.93 \pm 0.04) \ \%$
 - $D_s^+ \rightarrow \varphi \pi^+, \varphi \rightarrow K^- K^+ c\tau = (149.9 \pm 2.1) \ \mu m BR = (2.27 \pm 0.08) \ \%$
 - $\Lambda_c^+ \to K^- \pi^+ p$ $c\tau = (59.9 \pm 1.8) \ \mu m$ $BR = (6.35 \pm 0.33) \ \%$
 - *Charge conjugate particles are also measured
- The HFT allows direct topological reconstruction of open-charm hadrons through their hadronic decays
- STAR took data with the HFT in 2014 and 2016 for Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$
 - 2014: ~900M minimum-bias events
 - 2016: ~1.3B minimum-bias events

HEAVY QUARK ENERGY LOSS IN THE QGP

- At RHIC, charm quarks are created predominantly during the hard scattering
 - They pass through the QGP where they loose energy
- The precise mechanism of open-charm suppression in A+A collisions is not known

Quark propagation through the QGP

- Production phase
 - "Free" quark with large virtuality (does not have its gluon field)
 - Radiative energy loss
 - Vacuum restoration of the gluon field
 - Medium induced
- Formation phase
 - "Pre-hadron"
 - Momentum transfer between the quarks

Hadronization process

Fragmentation, coalescence...

HEAVY QUARK ENERGY LOSS IN THE QGP

- Example: Kopeliovich, et al.: arXiv:1208.4951v1
 - Any quark looses its gluon field after the hard scattering
 - Light flavor quarks:
 - Production time t_p is very short
 - Quark quickly restores its gluon field by vacuum radiation
 - Formation time $t_{\rm f}$ is long compared to $t_{\rm p}$
 - Pre-hadron interacts with the QGP
 - Collisional energy loss
 - Heavy flavor quarks:
 - Production time t_p is also short
 - Vacuum radiation suppressed by the dead-cone effect
 - Formation phase
 - Large momentum transfer from the heavy to the light quark – can break the pre-hadron
 - The heavy quark will carry lower fraction of the final state hadron momentum
 - Shift to lower value of the fragmentation function

Jan Vanek: Open-charm production at STAR

14.01.2019

D[±] AND D⁰ NUCLEAR MODIFICATION FACTOR

Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 data
- High p_T D[±] and D⁰ suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium
 - Similar level of suppression for D^\pm and D^0
- Low $p_{\mathrm{T}} \mathbf{D}^{0}$ suppressed as well
 - Integrated RAA < 1</p>

D⁰ (STAR): arXiv:1812.10224v1

p+p uncert.

3 4 5[—] p_{_} (GeV/c)

g

COLLECTIVITY

- Shape of the QGP fireball has direct influence on particle production in A+A collisions
- The initial geometry of the bulk propagates to the azimuthal $p_{\rm T}$ distribution of final state hadrons
- We can expand this distribution into the Fourier series:

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_{\mathrm{n}} \mathrm{cos}[n(\varphi - \Psi_{\mathrm{n}})]$$

where φ is the azimuthal angle, Ψ_n is the n-th order event plane angle and $\boldsymbol{v_n}$ is the n-th order harmonic coefficient

- $v_1 =$ directed flow
- $v_2 = \text{elliptic flow}$
- v₃ = triangular flow

```
• • • •
```


Figure by R. Vertesi

ELLIPTIC FLOW

Light flavor quarks:

- In semi-central A+A collisions the shape of the overlap region can be approximated by an ellipse
- High pressure in the center of the bulk and zero pressure at the surface (the bulk sits in the vacuum)
 - Works only if the mean free path of the particles in the bulk is (much) smaller than the size of the bulk itself
- Higher pressure gradient in the event plane
- Leads to elliptic asymmetry of the azimuthal $p_{\rm T}$ distribution

Heavy flavor quarks:

- Heavy quark interacts and thus thermalizes with the surrounding medium
- The more thermalized it gets, the more it will "flow" with the bulk

Hirano: arXiv:0808.2684v1

D⁰ ELLIPTIC FLOW

- Non-zero elliptic flow (v₂) of D⁰
 - Strong collective behavior of charm quarks
- As a function of $p_{\rm T}$
 - Mass ordering for $p_{\rm T}$ < 2 GeV/c
 - Comparable to light mesons for $p_{\rm T}$ > 2 GeV/c
- As a function of $(m_{\rm T} m_0)/n_{\rm q}$
 - Follows Number of Constituent Quarks (NCQ) scaling
- Suggests that c quarks might have achieved thermal equilibrium with the QGP

HEAVY-FLAVOR QUARKS DIRECTED FLOW

Hydrodynamics

- Light-flavors
 - Tilted bulk
 - Transverse and longitudinal pressure
 - Bozek, Wyskiel, Phys. Rev. C81, 054902 (2010)
- Heavy-flavors
 - Difference between the tilt of the bulk and the density profile of HF production
 - Larger slope of HF than light flavors
 - Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

Figures by P. Bozek

HEAVY-FLAVOR QUARKS DIRECTED FLOW

Initial EM field from passing spectators

- Light-flavors
 - Most light flavor quarks created late in the collision
 - Do not "feel" the initial EM field
- Heavy-flavors
 - Created early
 - Should experience the initial EM field
 - EM field "survives" long enough due to presence of the QGP
 - QGP is a conductor
 - Gursoy et. al., Phys Rev C 89, 054905 (2014)
 - Predicted opposite slope for D⁰ and D
 ⁰ due to opposite charge of c and c
 quarks
 - Das et. al., Phys Lett B 768, 260 (2017)

14.01.201

D⁰ **DIRECTED FLOW**

- First evidence of non-zero directed flow (v_1) of D^0 and D^0 as a function of rapidity (y)
- Negative v_1 slope for combined D^0 and D^0
- Model underpredicts the slope of D⁰
- Larger v_1 slope for D^0 than for kaons
- Insufficient precision to conclude about the EM induced splitting
- Negative v_1 slope for both D^0 and D^0

CHARM QUARK HADRONIZATION

- Fragmentation
 - Heavy quark radiates gluon which splits into quark anti-quark pair
 - The anti-quark is captured by the heavy quark
 - Present in the vacuum and the QGP
- Coalescence
 - The heavy quark passes through the QGP
 - It captures an anti-quark from the medium which is close in a kinematic phase-space
 - Present only in the QGP
- Statistical Hadronization Model (SHM)
 - Treats the QGP as a thermalized statistical source of particles

Kopeliovich, et al.: arXiv:1208.4951v1 [hep-ph]

$\Lambda_{\rm C}/D^0$ RATIO (STAR)

CENTRALITY DEPENDENCE

- The value in peripheral collisions is consistent with p+p measurement at $\sqrt{s} = 7$ TeV by ALICE
- Enhancement of the ratio increases towards central collisions

$p_{\rm T}$ DEPENDENCE

- Coalescence models closer to data than PYTHIA
- SHM underpredicts data
- Strong enhancement towards low p_T

$\Lambda_{\rm C}/D^0$ RATIO (ALICE)

- ALICE measurements of Λ_c/D⁰ ratio in p+p and p+Pb collisions
- Both colliding systems underpredicted by model calculations
- Possibly due to wrong fragmentation ratio of Λ_c from HERA?
- We do not quite understand production of $\Lambda_{\rm c}$

D_S/D^0 ENHANCEMENT

- D_s/D^0 ratio as a function of p_T
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to PYTHIA and elementary collisions (ee/pp/ep)
 - TAMU underpredicts measurements
 - Reasonable agreement with SHM
- D_s is enhanced in Au+Au collisions possibly due to strangeness enhancement and coalescence hadronization

ep/pp/ep avg: EPJ C 76, 397 (2016) TAMU: PRL 110, 112301 (2013) SHM: Phys.Rev.C 79 (2009) 044905

CONCLUSION

- STAR has extensively studied production of open-charm hadrons in heavy-ion collisions
 - Outstanding spatial resolution of the STAR HFT allows precise measurements of open-charm hadrons
 - Presented results provide significant constraints on model calculations
- D⁰ and D[±] mesons are significantly suppressed in central Au+Au collisions
 - Important for understanding charm quark energy loss in the QGP
- D^0 mesons have larger v_1 slope than light-flavor mesons
 - Can probe initial tilt of the bulk
- D^0 mesons have v_2 comparable to light-flavor hadrons
 - c quarks are possibly in thermal equilibrium with the medium
- Λ_c/D^0 and D_s/D^0 enhancements in Au+Au collisions with respect to p+p collisions
 - Important for understanding hadronization process
 - Importance of coalescence

THANK YOU FOR ATTENTION

Jan Vanek: Open-charm production at STAR

