Performance characterisation of ALPIDE after 2.7 Mrad proton irradiation at NPI

Valentina Raskina

Workshop EJČF 2019

Motivation for the ALICE upgrade

Increase of delivered luminosity of Pb-Pb $(100 \times w.r.t. \text{ current state})$ [1]

 $\mathsf{Physics}\ \mathsf{Goal} \to \mathsf{high}\text{-}\mathsf{precision}\ \mathsf{measurements}\ \mathsf{of}\ \mathsf{QGP}\ \mathsf{properties}$

- Open HF hadrons, quarkonia down to zero $p_{\rm T}$ Thermalization, hadronization, recombination, temperature evolution of the QGP
- Vector mesons and low-mass di-leptons Chiral symmetry restoration, thermal radiation from the QGP
- High-precision measurements of the light (anti-)nuclei and hypernuclei nucleosynthesis, exotics

ALICE Upgrade LoI Mar 2013

[1] K. Aamodt et. al.(ALICE collaboration), Phys. Rev. Lett.105 252301(2010)

ALICE Inner Tracking System Upgrade

- \bullet Improve impact parameter resolution by factor of \sim 3(5)
 - Get closer to IP (position of first layer): $39 \text{ mm} \rightarrow 23 \text{ mm}$
 - \blacktriangleright Reduce pixel size 50 $\mu m \times 425~\mu m \rightarrow$ 29 $\mu m \times$ 27 μm
 - \blacktriangleright Reduce material budget: $1.14\% \rightarrow 0.3\%~X_0$ per layer in IB
- Improve tracking efficiency and p_{T} resolution at low p_{T}
 - ▶ 6 layers → 7 layers
 - Silicon pixel, drift, strip \rightarrow only pixels (ALPIDE)
- Fast readout
 - readout Pb–Pb interactions at > 100 kHz
- Fast insertion/removal for yearly maintenance

ALPIDE Sensor

- Monolithic Active Pixel Sensor (MAPS) 180 nm CMOS Imaging by Tower Jazz, each ALPIDE pixel contains sensitive volume, amplification and discrimination
- High resistivity $>1k\Omega$ cm p–type epitaxial layer 25 μm thick on p–type substrate; deep p-well shielding PMOS transistors
- Small n-well diode 2 µm diameter, much smaller than pixel
- $\bullet~$ Threshold is regulated by global DACs: $V_{\rm CASN},~I_{\rm THR}$

ALPIDE requirements and performance

	Inner	Outer	ALPIDE
	Barrel	Barrel	performance
Thickness [µm]	50	100	OK
Spatial resolution [µm]	5	10	~ 5
Chip dimension [mm]	15 imes 30	15 imes 30	OK
Power density [mW/cm ²]	< 300	< 100	<40
Event-time resolution [µs]	< 30	< 30	~ 2
Detection efficiency [%]	> 99	> 99	OK
Fake-hit rate [event ⁻¹ pixel ⁻¹]	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-10}$

Radiation load for the Inner Barrel: TID 270 krad (Total Ionizing Dose) NIEL 1.3×10^{12} 1MeV n_{eq}·cm⁻² (Non-Ionizing Energy Loss) Chip is tested with a safety factor of 10

Radiation Hardness Tests at NPI

- Cyclotron provides protons with E = 35 MeV
- Beam current I $\approx 50\, pA$
- On-line monitoring using ionization chamber 30100 PTW Freiburg
- TID and NIEL are calculated using stopping power of material (S) and fluence (F)

$$\begin{split} \mathrm{TID}\,[\mathrm{krad}] &= 1.602 \times 10^{-8} \times \mathrm{S}\,[\mathrm{MeV} \cdot \mathrm{cm}^2 \cdot \mathrm{mg}^{-1}] \times \mathrm{F}\,[\mathrm{cm}^{-2}] \\ \mathrm{NIEL}\,[1\,\mathrm{MeV}\,\mathrm{n_{eq}}\,\mathrm{cm}^{-2}] &= 2.346 \times \mathrm{F}\,[\mathrm{cm}^{-2}] \end{split}$$

[2] F. Křížek, ... V. Raskina, ... , Nuclear Inst. and Methods in Physics Research, A 894 (2018) 87–95.

[3] Non Ionizing Energy Loss (NIEL), https://rd50.web.cern.ch/rd50/NIEL/default.html

Setup

Irradiation of the chip

- Threshold and DAC scans are made when beam is stopped
- Each time chip receives TID ≈ 100 krad ($\approx 1/3$ of the total dose in Run3) ٠

A4W7G7R41

Charge threshold and temporal noise measurement

Firing probability of a pixel is tested by inducing a given charge 50 times on the analog part of pixel. The firing probability is described by S-function:

$$S(Q) = rac{1}{2} \left(50 + 50 imes extsf{erf} \left(rac{Q - Q_{ extsf{THR}}}{\sqrt{2}\sigma}
ight)
ight),$$

Q - induced charge, Q_{THR} - threshold, σ - noise.

S curves for different time periods for chosen pixel

Shift of the S curve to the left/right corresponds to decrease/increase of threshold.

Broadening of the transition region corresponds to increase of noise.

A4W7G7R41 pixel 252,252

ALPIDE

Mean threshold vs. TID

- Average threshold over 10% of 0.5 M pixels
- \bullet With initial settings of $I_{\rm THR}$ and $V_{\rm CASN} \rightarrow$ threshold decreased
- $\bullet\,$ Since Nov 2017, running with decreased $V_{\rm CASN}$ settings \to since then we observe annealing

A4W7G7R41

Fake-Hit Rate and Efficiency

- $\bullet\,$ Irradiated chip obtained TID of 2700 krad and NIEL of 2.7 $\times\,10^{13}$ 1 MeV $n_{\rm eq} cm^{-2}$
- ALPIDE chip was tested at CERN PS with 6 GeV pion beam
- Limit on detection efficiency > 99%
- Limit on fake hit rate $< 10^{-6}$ event⁻¹pixel⁻¹

Summary

- ALICE will upgrade its Inner Tracking System (ITS) detector in LS2
- The radiation hardness tests of the ALPIDE sensors were done at U-120M cyclotron with 30 MeV proton beam
- ALPIDE chip which obtained TID of 2700 krad and NIEL of $2.7 \times 10^{13}~1$ MeV $n_{\rm eq} cm^{-2}$ meets the requirements for the new ITS

Backup

Ionization chamber and ALPIDE

DAQ board (read-out) and Carrier card with ALPIDE chip

Proton beam profile

- Beam profile is a 2D symmetric gaussian
- 0.56 mm thick Al degrader plate is used to increase its width to $\sigma\approx 22\,\mathrm{mm}$

ALICE

Mean noise vs. TID

- Average noise over 10 % pixels out of 0.5 M
- Noise is continuously increasing with TID
- Annealing is present but small

A4W7G7R41

Resolution and Cluster size of irradiated and non-irradiated chip

The required spatial resolution is $\sim 5\,\mu m$

