Multiplicity Fluctuations and Resonances in Heavy-Ion Collisions

Josef Uchytil

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

18. 1. 2019

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 1 / 32

- Quark-Gluon Plasma and Heavy Ion Collisions within the Statistical Model
- 2 Calculation of the statistical moments within the Statistical Model
- Multiplicity fluctuations for a resonance gas model with chemical equilibrium
- Multiplicity fluctuations for a resonance gas model with chemical non-equilibrium

Conclusion

Quark-Gluon Plasma and Heavy Ion Collisions within the Statistical Model

The Quark-Gluon Plasma (QGP) is a state of matter where partons are deconfined, i. e. not confined in hadrons. Deconfinement is phenomenologically (i. e. within the QCD framework) defined as a phase transition.

- the position of the phase transition fully described (at sufficiently high collision energies) by a set of two parameters T and μ_B
- Hadron Resonance Gas model reproduction of the equilibrium IQCD results for the lowest order susceptibilities and their ratios reasonably well reproduced
- A+A collisions Grandcanonical formalism (GCE), $pp, p\bar{p}, e^+e^-$ Canonical and Microcanonical formalism (CE and MCE)
- moments of net-particle multiplicity distributions from the experiment related to susceptibilities of conserved charges

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Josef Uchytil (Faculty of Nuclear Sciences anMultiplicity Fluctuations and Resonances in H

▲ 重 ▶ 重 ∽ ९
 18. 1. 2019 4 / 32

- m-th statistical moment $\varphi_m(X)': \varphi_m(X)' = E(X^m)$
- m-th central moment $\varphi_m(X) : \varphi_m(X) = E(X EX)^m$
- first four central moments are of great significance
- mean: $M = \varphi_1$, variance: $\sigma^2 = \varphi_2$
- skewness: $S = \varphi_3/\varphi_2^{3/2}$ measure of the assymetry of the probability distribution
- kurtosis: $\kappa=\varphi_4/\varphi_2^2$ measure of the "tailedness" of the probability distribution

Skewness (left) and kurtosis (right).

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

Calculation of the multiplicity fluctuations within the statistical model

- grandcanonical and canonical ensemble assumed, event-by-event distributions of conserved quantities - characterized by the moments (M, σ, S, κ)
- introduction of the following products: $S\sigma = \varphi_3/\varphi_2$, $\kappa\sigma^2 = \varphi_4/\varphi_2$, $M/\sigma^2 = \varphi_1/\varphi_2$, $S\sigma^3/M = \varphi_3/\varphi_1$ -the volume term in the distribution gets obviously cancelled; direct comparison of experimental measurement and theoretical calculation possible
- large volume limit (V $\rightarrow \infty)$ all statistical ensembles (MCE, CE, GCE) equivalent

Partition functions in statistical ensembles - GC formalism

- HRG model all relevant degrees of freedom contained in the partition function
- confined, strongly interacting matter interactions that result in resonance formation included
- **GC** partition function: $Z_{GC}(\lambda_j) = \prod_j \exp\left[\sum_{\substack{n_j=1 \\ n_j=1}}^{+\infty} \frac{z_j(n_j)\lambda_j^{n_j}}{n_j}\right]$ where $z_j(n_j) = (\mp 1)^{n_j+1} \frac{d_j V}{2\pi^2 n_j} T m_j^2 K_2\left(\frac{n_j m_j}{T}\right)$ is the single particle partition function
- $K_2 \dots$ modified Bessel function, $V \dots$ volume of the hadron gas
- $\lambda_j = \exp(\frac{\mu_j}{T}) \dots$ fugacity for each particle species $j, m_j \dots$ hadron mass
- $\mu_j \dots$ chemical potential of a particle species j, $d_j = 2J_j + 1 \dots$ spin degeneracy
- \mp ... upper sign for fermions, lower sign for bosons

Fluctuations in a hadron resonance gas model with chemical equilibrium

Susceptibilities and cumulants:

•
$$\chi_{l}^{(i)} = \frac{\partial^{l}(P/T)^{4}}{\partial(\mu_{i}/T)^{l}} | T$$

• $\chi_{1}^{(i)} = \frac{1}{VT^{3}} \langle N_{i} \rangle_{c} = \frac{1}{VT^{3}} \langle N_{i} \rangle$
• $\chi_{2}^{(i)} = \frac{1}{VT^{3}} \langle (\Delta N_{i})^{2} \rangle_{c} = \frac{1}{VT^{3}} \langle (\Delta N_{i})^{2} \rangle$
• $\chi_{3}^{(i)} = \frac{1}{VT^{3}} \langle (\Delta N_{i})^{3} \rangle_{c} = \frac{1}{VT^{3}} \langle (\Delta N_{i})^{3} \rangle$
• $\chi_{4}^{(i)} = \frac{1}{VT^{3}} \langle (\Delta N_{i})^{4} \rangle_{c} = \frac{1}{VT^{3}} \left(\langle (\Delta N_{i})^{4} \rangle - 3 \langle (\Delta N_{i})^{2} \rangle^{2} \right)$

Equilibrium pressure:

•
$$P/T^4 = \frac{1}{VT^3} \sum_i \ln Z_{m_i}^{M/B}(V, T, \mu_B, \mu_Q, \mu_S)$$

• $\ln Z_{m_i}^{M/B} = \mp \frac{Vd_i}{(2\pi)^3} \int d^3k \ln(1 \mp z_i \exp(-\epsilon_i/T))$
• $\epsilon_i = \sqrt{k^2 + m_i^2}$
• $z_i = \exp(\frac{\mu_i}{T}), \ \mu_i = B_i\mu_B + S_i\mu_S + Q_i\mu_Q.$

Image: A math black

→ ∃ →

Inclusion of resonances

$$VT^{3}\frac{\partial(P/T^{4})}{\partial(\mu_{h}/T)}|_{T} = \langle N_{h} \rangle + \sum_{R} \langle N_{R} \rangle \langle n_{h} \rangle_{R}$$

where $\langle N_h \rangle$ and $\langle N_R \rangle$ are the means of the primordial numbers of hadrons and resonances, respectively. The sum runs over all the resonances in the model.

•
$$\langle n_h \rangle_R \equiv \sum_r b_r^R n_{h,r}^R$$

- b_r^R the branching ratio of the decay-channel and $n_{h,r}^R = 0, 1, ...$ number of hadrons *h* formed in that specific decay-channel.
- The related susceptibilities are then given by

$$\hat{\chi_I}^{(h)} = \chi_I^{(h)} + \sum_R \chi_I^{(R)} \langle n_h \rangle_R^I$$

18.1.2019

11 / 32

 \rightarrow formulae for statistical quantities (and their respective ratios) retain their form, only hats are added.

・ロト ・日下 ・ 日下

Fluctuations in a hadron resonance gas model with chemical non-equilibrium I.

Non-equilibrium pressure:

•
$$P/T^4 = \frac{1}{VT^3} \sum_i \ln Z_{m_i}^{M/B}(V, T, \mu_i)$$

• $\ln Z_{m_i}^{M/B} = \mp \frac{Vd_i}{(2\pi)^3} \int d^3k \ln(1 \mp z_i \exp(-\epsilon_i/T))$
• $\epsilon_i = \sqrt{k^2 + m_i^2}$

•
$$z_i = \exp\left(\frac{\mu_i}{T}\right), \ \mu_i = \sum_j N_{ji}\mu_j.$$

- N_{ji} average number of stable particles emerging in the decay of the level *i*
- μ_j chemical potential of the j-th stable particle
- 26 particle species we consider stable: $\pi^0, \pi^+, \pi^-, K^+, K^-, K^0, \overline{K}_0, \eta$ and $p, n, \lambda^0, \sigma^+, \sigma^0, \sigma^-, \Xi^0, \Xi^-, \Omega^-$ and their respective anti-baryons
- assumption: chemical potential of the mother equal to the sum of the chemical potentials of the daughters

Fluctuations in a hadron resonance gas model with chemical non-equilibrium II.

The thermodynamic susceptibility χ_l of particle species *a* is given by

$$\chi_I^{(a)} = \frac{\partial^I (P/T^4)}{\partial (\mu_a/T)^I} = T^I \frac{\partial^I (P/T^4)}{\partial \mu_a^I}.$$

For partial pressure P/T^4 , we obtain

$$\frac{P}{T^4} = \frac{1}{2\pi^2 T^2} \sum_{i} \sum_{k=1}^{+\infty} d_i m_i^2 \frac{(-1)^{k+1}}{k^2} \exp\left(\frac{k}{T} \sum_{j \in \mathcal{A}} N_{ji} \mu_j\right) K_2\left(\frac{km_i}{T}\right),$$

then the corresponding thermodynamic susceptibility reads

$$\chi_{l}^{(a)} = \frac{1}{2\pi^{2}T^{2}} \sum_{i} \sum_{k=1}^{+\infty} d_{i}m_{i}^{2}(-1)^{k+1}k^{l-2}N_{ai}^{l}\exp\left(\frac{k}{T}\sum_{j\in A}N_{ji}\mu_{j}\right)K_{2}\left(\frac{km_{i}}{T}\right)$$

Fluctuations in a hadron resonance gas model with chemical non-equilibrium III.

Obviously, the ratio of any two thermodynamic susceptibilities of the same particle species *a*, denoted $\chi_l^{(a)}$ and $\chi_n^{(a)}$, $l \neq n$, can be written as

$$\frac{\chi_l^{(a)}}{\chi_n^{(a)}} = \frac{\sum_i \sum_{k=1}^{+\infty} d_i m_i^2 (-1)^{k+1} k^{l-2} N_{ai}^l \exp\left(\frac{k}{T} \sum_{j \in \mathcal{A}} N_{ji} \mu_j\right) K_2\left(\frac{km_i}{T}\right)}{\sum_i \sum_{k=1}^{+\infty} d_i m_i^2 (-1)^{k+1} k^{n-2} N_{ai}^n \exp\left(\frac{k}{T} \sum_{j \in \mathcal{A}} N_{ji} \mu_j\right) K_2\left(\frac{km_i}{T}\right)}$$

- implementation of the derived formulae using data from DRAGON with the newest PDG update
- calculations performed for the most central Au + Au collisions (centrality 0-5 and 5-10) and for seven collision energies $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27.0, 39.0, 62.4, 200 \text{ GeV}$
- RHIC Beam Energy Scan program ratio fits (GCER) have been used
 corresponding chemical freeze-out parameters for grand canonical ensemble
- temperature dependencies of the (net-)proton number densities and the ratios of thermodynamic susceptibilities $\omega = \frac{\chi_2}{\chi_1}$, $S\sigma = \frac{\chi_3}{\chi_2}$ and $\kappa\sigma^2 = \frac{\chi_4}{\chi_2}$ for each of the collision energies and each centrality

Results for centrality 0-5 and $\sqrt{s_{NN}} = 7.7$ GeV

18. 1. 2019 17 / 32

< □ > < ---->

< E.

Results for centrality 0-5 and $\sqrt{s_{NN}} = 11.5$ GeV

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 18 / 32

< □ > < ---->

-∢ ∃ ▶

Results for centrality 0-5 and $\sqrt{s_{NN}} = 19.6$ GeV

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 19 / 32

< □ > < ---->

Results for centrality 0-5 and $\sqrt{s_{NN}} = 27.0 \text{ GeV}$

Josef Uchytil (Faculty of Nuclear Sciences anMultiplicity Fluctuations and Resonances in H

18. 1. 2019 20 / 32

< □ > < ---->

Results for centrality 0-5 and $\sqrt{s_{NN}} = 39.0 \text{ GeV}$

18. 1. 2019 21 / 32

< □ > < ---->

Results for centrality 0-5 and $\sqrt{s_{NN}} = 62.4 \text{ GeV}$

18. 1. 2019 22 / 32

< □ > < ---->

- ∢ ∃ ▶

Results for centrality 0-5 and $\sqrt{s_{NN}} = 200 \text{ GeV}$

18. 1. 2019 23 / 32

< □ > < ---->

-∢ ∃ ▶

Results for centrality 5-10 and $\sqrt{s_{NN}} = 7.7$ GeV

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 24 / 32

< □ > < ---->

< E.

Results for centrality 5-10 and $\sqrt{s_{NN}} = 11.5$ GeV

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 25 / 32

э

< □ > < ---->

-∢ ∃ ▶

Results for centrality 5-10 and $\sqrt{s_{NN}} = 19.6$ GeV

18. 1. 2019 26 / 32

< □ > < ---->

Results for centrality 5-10 and $\sqrt{s_{NN}} = 27.0 \text{ GeV}$

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 27 / 32

< □ > < ---->

Results for centrality 5-10 and $\sqrt{s_{NN}} = 39.0$ GeV

18. 1. 2019 28 / 32

Image: Image:

Results for centrality 5-10 and $\sqrt{s_{NN}} = 62.4$ GeV

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 29 / 32

Image: Image:

< E.

Results for centrality 5-10 and $\sqrt{s_{NN}} = 200 \text{ GeV}$

Josef Uchytil (Faculty of Nuclear Sciences an Multiplicity Fluctuations and Resonances in H

18. 1. 2019 30 / 32

Image: Image:

-∢ ∃ ▶

Experimental data

18. 1. 2019 31 / 32

< 3 >

- derivation of the first four moments corresponding to the state of chemical non-equilibrium using the fact that chemical potentials appear for each stable type of hadrons → calculation of the moments of baryon number distribution and proton multiplicity depending on the temperature of the system
- temperature dependence of specific ratios of thermodynamic susceptibilities for protons, antiprotons and net protons explored using the RHIC BES program
- comparison with relevant experimental data performed