Quantum many-body problem in nuclear physics

Petr Veselý Nuclear Physics Institute, Czech Academy of Sciences gemma.ujf.cas.cz/~p.vesely/

> Workshop EJČF2019, Bílý Potok, January 2019

List of Collaborators

Nuclear Physics Institute, Czech Academy of Sciences

Petr Veselý Jan Pokorný Giovanni De Gregorio

Institute of Nuclear and Particle Physics, Charles University

František Knapp

Universita degli Studi Federico II, Napoli

Quantum many-body problem

Quantum many-body (QMB) problem:

It is demanding to describe physical properties of **microscopic system** of **many** mutualy interacting **particles**.

- microscopic system = described within quantum mechanics approach
- many particles = whatever from 3 to any large (finite) number

- in some cases for 3 or 4 particles **exact solution** is possible (**Fadeev** or **Fadeev-Yakubovski** eqs.) ... then we speak about **few-body problem**

- infinite systems can be often described within statistical approaches

Where solution of QMB is useful:

- nuclear physics
- atomic physics
- molecular physics
- solid state physics
- nanoscopic systems

(fullerens, quantum dots, nanowires...)

Quantum many-body problem

Main approaches to solve QMB problem:

This is definitely not "complete list" of theoretical approaches, only "well known" examples:

- Density functional theory (DFT)
- Mean-field methods (Hartree-Fock, TDA, RPA)
- Beyond mean-field or "post-Hartree-Fock" approaches
 - Coupled cluster
 - Configuration Interaction
 - Equation of Motion Phonon Method

(EMPM)

- Monte Carlo approaches
 - Green's function Monte Carlo
 - Auxiliary field diffusion Monte Carlo

method (AFDMC)

- Self-consistent Green's function (SCGF)

Physics of atomic nucleus - what do we study (only QMB problem)?

Atomic nucleus as a bound system of nucleons

nucleons as a bound system of quarks

What we see depends on resolution: < 0.0001 fm: quarks

 0.1-1 fm : baryons, mesons

1 fm: nucleons

10 fm : collective modes

Implicit paradigm of theoretical nuclear physics:

Nucleus is **bound state of nucleons**. We describe nucleus by methods of **quantum mechanics** (QM) from **interactions** among **nucleons**.

This paradigm itself is not most **fundamental approach** – we should describe nuclei from **QCD**. Except of first pioneering attempts [**Phys. Rev. Lett.** 113, 252001 (2014)] **impossible**!!

Instead we employ the strategy: build **potential** among **nucleons** (NN, NNN, etc.) → solve QMB problem with given nucleon potential (i.e. Hamiltonian)

Building potentials itself is complicated task – **nucleons** as particles with the **inner structure**. Even the potentials cannot be build directly from **QCD**.

Models to describe nucleon potentials. For potentials suitable for nuclear calculations we need to solve many-body nuclear problem. Solution of the nuclear many-body

problem strongly depend on the

employed nucleon potential.

 $\begin{aligned} \mathcal{L}_{\pi N} &= \hat{\mathcal{L}}_{\pi N}^{(1)} + \hat{\mathcal{L}}_{\pi N}^{(2)} + \hat{\mathcal{L}}_{\pi N}^{(3)} + \ \dots \\ \hat{\mathcal{L}}_{\pi N}^{(1)} &= \bar{N} \left[i\partial_0 - \frac{1}{4F_{\pi}^2} \vec{\tau} \cdot (\vec{\pi} \times \partial_0 \vec{\pi}) - \frac{g_A}{2F_{\pi}} \vec{\tau} \cdot (\vec{\sigma} \cdot \vec{\nabla}) \vec{\pi} \right] N + \ \dots \end{aligned}$

Realistic nucleon potentials:

Effective field theory – instead of QCD field theory with elem. degrees of freedom (quarks, gluons) we build field theory with nucleons and pions. Must obey the same symmetries as QCD –> Chiral Perturbation Theory (ChPT)

> Only mesons here are pions. But pion exchanges 2π , 3π , ... till any order. Multi-pion exchanges replace presence of other types of mesons.

Diagrams of NN scatering can be divided to orders – perturbative theory (?)

Hohenberg-Kohn theorem:

"The (non-degenerated) ground state wave function of a many-body fermionic system is a unique functional of the single-particle density."

Basic words:

density functional

$$\mathcal{H}(\vec{r}) = \mathcal{H}\left[\Psi(\vec{r})\right] = \mathcal{H}\left[\rho(\vec{r})\right]$$

single-particle density

⇔

$$\rho(\vec{r}) = \sum_{i=1}^{A} \phi_i^*(\vec{r})\phi_i(\vec{r})$$

$$\frac{\delta \mathcal{H}}{\delta \Psi} = \frac{\delta \mathcal{H}}{\delta \rho} \frac{\delta \rho}{\delta \Psi} = 0$$

$$\frac{\delta \mathcal{H}}{\delta \rho} = 0 \quad \text{if} \quad \frac{\delta \rho}{\delta \Psi} \neq 0$$

Skyrme functional – most usual form of DFT in nuclear physics:

Advantage of DFT:

- Its applicability to basically whole **nuclear chart** (including superheavies)
- Computational simplicity

Problem of DFT:

- No clear link functional ↔ interaction

(**J. Dobaczewski**, J. Phys. G: Nucl. Part. Phys. 43 (2016) 04LT01)

- DFT primarily for **ground states**, calculations of nuclear excited states in approaches based on DFT – mostly **collective excitations**

Nuclear Landscape Ab initio **Configuration Interaction Density Functional Theory** TTTT stable nuclei known nuclei terra incognita neutrons

Photoabsorption total cross section:

$$\sigma(E\lambda\mu) = 8\pi^3 \frac{\lambda+1}{\lambda[(2\lambda+1)!!]^2} \sum_{\nu} \left(\frac{\omega_{\nu}}{\hbar c}\right)^{2\lambda-1} |<\nu|\hat{M}(\lambda\mu)|gs>|^2$$

Existence of "magic" numbers in atomic physic:

Consequence of movement of electrons in *Coulomb field* of atomic nucleus

Atomic nuclei

2n separation energies S_2n = B(A,Z) - B(A-2,Z)

Shell corrections -> magic numbers

Magic numbers 2,8,20,28,50,82,126

How shell structure occurs in nucleus?

Nuclear mean field "original" shell-model

Closed shells indicated by "magic numbers" of nucleons.

M.Goepert-Mayer, J. H. D. Jensen 1963 Nobel prize for physics

"shell structure in nuclei and correct magic numbers"

Magic numbers 2,8,20,28,50,82,126

How mean field occurs in nucleus? → change our perspective

nucleons as non-interacting particles in potential well

mutual interaction of nucleons creates "mean field" → nucleons move in this field

Hartree-Fock method - mean-field is generated "by itself" = self-consistence

$$\sum_{ij} t_{ij} a_i^{\dagger} a_j + \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{kilj} \langle |a_k^{\dagger} a_l| \rangle \right\} a_i^{\dagger} a_j + \frac{1}{4} \sum_{ijkl} V_{ijkl} : a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{kilj} \langle |a_k^{\dagger} a_l| \rangle \right\} a_i^{\dagger} a_j + \frac{1}{4} \sum_{ijkl} V_{ijkl} : a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{kilj} \langle |a_k^{\dagger} a_l| \rangle \right\} a_i^{\dagger} a_j + \frac{1}{4} \sum_{ijkl} V_{ijkl} : a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{kilj} \langle |a_k^{\dagger} a_l| \rangle \right\} a_i^{\dagger} a_j + \frac{1}{4} \sum_{ijkl} V_{ijkl} : a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{kilj} \langle |a_k^{\dagger} a_l| \rangle \right\} a_i^{\dagger} a_j = 0$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{kilj} \langle |a_k^{\dagger} a_l| \rangle \right\} a_i^{\dagger} a_j = 0$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{kilj} \langle |a_k^{\dagger} a_l| \rangle \right\} a_i^{\dagger} a_j = 0$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k = \sum_{ij} \left\{ t_{ij} + \sum_{kl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k :$$

$$+ \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l$$

Figure 2.3: Ground-state energies and charge radii of closed-shell nuclei ($e_{\text{max}} = 12$) for V_{α} with $\bar{\alpha} = 0.025 \text{ fm}^4$ ($-\bullet$), 0.030 fm^4 ($-\bullet$), and 0.035 fm^4 ($-\bullet$), compared to experimental data ($-\bullet$).

FIG. 6. Systematic of root-mean-square point proton radii computed in HF. The calculations are performed for $N_{max} = 14$ and different HO frequencies ω . The experimental data are from Ref. [49].

nuclear radius -> gaps single-particle energies -> photoabsorption excitation spectra

 $\begin{array}{l} \text{Fig. 3: The neutron sing} \\ \text{014006, (2019)} \end{array} \qquad \begin{array}{l} \text{Fig. 3: The neutron sing} \\ {}^{40}\text{Ca (b) calculated with} \\ \text{tions. The ampirical data} \end{array}$

Fig. 3: The neutron single-particle energies ε_i^n of ${}^{16}O$ (a) and ${}^{40}Ca$ (b) calculated with *NN* (I) and *NN* + *NNN* (II) interactions. The empirical data (emp) [24] are shown for comparison.

Hilbert space – divided into subspaces

 $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus ... \oplus \mathcal{H}_n$

HF – Hartree-Fock state (nucleons occupy lowest single-particle levels)
1p-1h = 1particle – 1hole excitation of HF
2p-2h = 2particle – 2hole excitation of HF

np-nh = n**particle** – n**hole** excitation of HF

Instead of multiple particle-hole excitations we can excite multiple TDA phonons

Tamm-Dancoff (TDA) phonons

 $O^{\dagger}_{\nu} = \sum_{ph} c^{\nu}_{ph} a^{\dagger}_{p} a_{\hat{h}}$

Phonons = linear combination of 1p-1h excitations can represent **collective modes**

 $\mathcal{H}_0 = \{ |HF > \}$ $\mathcal{H}_1 = \{ O_{\nu_1}^{\dagger} | HF > \}$ $\mathcal{H}_2 = \{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} | HF > \}$

$$\mathcal{H}_n = \left\{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} ... O_{\nu_n}^{\dagger} | HF > \right\}$$

 $\begin{array}{rcl} \mathcal{H}_{0} & = & \{ |HF> \} \\ \mathcal{H}_{1} & = & \left\{ O_{\nu_{1}}^{\dagger} |HF> \right\} \\ \mathcal{H}_{2} & = & \left\{ O_{\nu_{1}}^{\dagger} O_{\nu_{2}}^{\dagger} |HF> \right\} \end{array}$

 $\mathcal{H}_n = \left\{ O_{\nu_1}^{\dagger} O_{\nu_2}^{\dagger} ... O_{\nu_n}^{\dagger} | HF > \right\}$

the total **Hamiltonian** mixes configurations from different **Hilbert subspaces**

Equation of Motion (EoM) – recursive eq. to solve eigen-energies on each i-phonon subspace while knowing the (i-1)-phonon solution

 $< i, \beta_i | [\hat{H}, O_{\nu}^{\dagger}] | i - 1, \alpha_{i-1} > = (E_{\beta_i}^i - E_{\alpha_{i-1}}^{i-1}) < i, \beta_i | O_{\nu}^{\dagger} | i - 1, \alpha_{i-1} >$

non-diagonal blocks of **Hamiltonian** calculated from amplitudes $< i, \beta_i | O_{\nu}^{\dagger} | i - 1, \alpha_{i-1} >$

we diagonalize the total Hamiltonian

Correlations and their effect on the nuclear ground state:

NN interaction - χ NNLO_{opt}

A. Ekström et al., PRL 110, 192502 (2013)

2-phonon correlations in the g.s.

 $|\Psi_{g.s.}> \approx C_{HF}^{g.s.}|HF> + \sum_{\mu_2} C_{\mu_2}^{g.s.}|i=2,\mu_2>$

Phys. Rev. C 95, 024306 (2017)

TABLE I. Binding energies per nucleon. The EMPM value for 40 Ca was obtained for $N_{max} = 8$, which is not an extremal point.

BE/A (MeV) AX HF PT EMPM Exp					
⁴ He	3.96	7.07	6.67	7.07	
¹⁶ O	3.22	8.29	6.77	7.98	
⁴⁰ Ca	4.00	9.77	7.02	8.55	

running sum of contributions of the **2-phonon configurations** into the **correlated** ground state

Correlations and their effect on the nuclear radii:

NN interaction - χ **NNLO**_{opt}

A. Ekström et al., PRL 110, 192502 (2013)

small effect of correlations on **r**_b

satisfactory description of **radius** with **HF**

diploma thesis of J. Pokorný

FIG. 7. HF and EMPM point proton radii of ⁴He (a) and ¹⁶O (b) versus N_{max} for fixed frequency ($\hbar \omega = 26$ MeV).

$$\Psi_{g.s.} > \approx C_{HF}^{g.s.} |HF > + \sum_{\mu_2} C_{\mu_2}^{g.s.} |i = 2, \mu_2 >$$

proton point radii

$$< r_p^2 > = < \Psi_{g.s.} | r_p^2 | \Psi_{g.s.} > = < r_p^2 >_{HF} + < r_p^2 >_{corr.}$$

FIG. 6. Systematic of root-mean-square point proton radii computed in HF. The calculations are performed for $N_{\text{max}} = 14$ and different HO frequencies ω . The experimental data are from Ref. [49].

^X X	HF	Exp.	
⁴ He	1.38	1.40	1.46
¹⁶ O	2.25	2.26	2.57

Correlations and their effect on the nuclear **photoabsorption spectra**:

NN interaction - χ NNLO_{opt}
 A. Ekström et al., PRL 110,
 192502 (2013)

calculation of ²⁰⁸Pb – see in **Phys. Rev. C 92**, 054315 (2015)

study of the dipole photoabsorption spectrum $B(E1, 0^+_{g.s.} \rightarrow 1^-_{exc.})$

2-phonon configurations very important to describe richness of spectrum → **multifragmentation** of dipole resonance... we describe **width** of resonance

most of **1**⁻ states have configurations beyond 1**phon**

TABLE I. Phonon composition of the lowest twenty 1- states.

<u></u>		C(v) 2	$ c(v) ^2$
J_v^{α}	ω_{ν} (MeV)	C ₁	C ₂
1_{1}^{-}	4.42780	0.00017	0.99983
1^{-}_{2}	4.67271	0.00083	0.99917
13	4.96609	0.00014	0.99986
1_{4}^{-}	5.46012	0.95558	0.04442
15	5.93408	0.03132	0.96868
1_{6}^{-}	6.05979	0.90712	0.09288
1_{7}^{-}	6.18594	0.05422	0.94578
1_{8}^{-}	6.25179	0.04936	0.95064
19	6.26285	0.05409	0.94591
1_{10}^{-}	6.27701	0.00310	0.99690
1_11	6.38869	0.15931	0.84069
1_{12}^{-}	6.40474	0.69907	0.30093
1^{-}_{13}	6.42531	0.03371	0.96629
1^{-}_{14}	6.43502	0.03215	0.96785
1 ₁₅	6.48971	0.86985	0.13015
1^{-}_{16}	6.53002	0.00956	0.99044
1^{-}_{17}	6.55127	0.00485	0.99515
1^{-}_{18}	6.64103	0.00346	0.99654
1_19	6.71925	0.01301	0.98699
1^{-}_{20}	6.73778	0.00058	0.99942

Open problems:

- large scale **converged** (with respect to config. space) results up to **2-phonon**, but at least **3-** and **4- phonon** calcs. needed

- all complex configurations seem to contribute to the correlated g.s. wave function \rightarrow not possible of drastic cut-offs

- unconverged 3-phonon calculations

- more efficient computations (better use of paralel computing)

- importance truncation

- formulate **EoM** directly on the **correlated g.s.** ??

Summary

- Quantum many-body probem remain unsolved for decades
- In atomic nuclei QMB even more complicated, description of interaction is open problem too
- Several model dependent approaches to QMB, no one precise
- We discussed **DFT**, nuclear **mean-field**, **EMPM** approaches **open problems** call for solution and further effort!!

Thank you for attention!