CP Violation in $B_s^0 \rightarrow J/\psi\phi$ - Theoretical Background

Lukáš Novotný

1 CP Violation

2 CKM Mechanism

- 3 Mixing of neutral *B* mesons
- 4 Current experimental status of ϕ_s

Parity:

Parity:

■ The parity converts a right handed coordinate system to left handed (x, y, z → -x, -y, -z).

$$\mathcal{P}\psi(\mathbf{r})=\psi(-\mathbf{r})$$

- Eigenvalues are ±1
- Any physical process will happen identically when viewed in a mirror image
- does not affect time, charge and angular momentum

Parity:

■ The parity converts a right handed coordinate system to left handed (x, y, z → -x, -y, -z).

$$\mathcal{P}\psi(\mathbf{r})=\psi(-\mathbf{r})$$

- Eigenvalues are ±1
- Any physical process will happen identically when viewed in a mirror image
- does not affect time, charge and angular momentum

Charge conjugation

Parity:

■ The parity converts a right handed coordinate system to left handed (x, y, z → -x, -y, -z).

$$\mathcal{P}\psi(\mathbf{r})=\psi(-\mathbf{r})$$

- Eigenvalues are ±1
- Any physical process will happen identically when viewed in a mirror image
- does not affect time, charge and angular momentum

Charge conjugation

changes the sign of the all quantum charges

$$\mathcal{C}\psi(\mathbf{r})=\bar{\psi}(-\mathbf{r})$$

does not affect the mass, linear momentum and spin

Violation of Parity and Charge Conjugation

Parity Violation

Chien-Shiung Wu 1956, ⁶⁰Co decay

$$^{60}_{27} ext{Co}
ightarrow ^{60}_{28} ext{Ni} + e^- + ar{
u}_e + 2\gamma$$

- cobalt nuclei were placed in the magnetic field
- electrons would have no preferred direction of decay relative to the nuclear spin
- Most of the electrons favoured a very specific direction of decay, opposite to that of the nuclear spin

CP Violation

- Parity violated is combination of P and C violated?
- Strong and EM interactions: CP conserved
- Weak interactions: *CP* violated:
 - Christenson, Cronin, Fitch and Turlay 1964
 - study of two neutral K mesons in the kaon decays, K_S^0 and K_L^0
 - if \mathcal{CP} conserved:

$$K_S^0
ightarrow 2\pi$$
 $K_L^0
ightarrow 3\pi$

- $K_L^0 \rightarrow 2\pi$ observed!!
- $K^{\bar{0}}\bar{K}^{0}$ oscilation, CP violated
- Three types of *CP* violation:
 - in decay
 - in mixing
 - in interference of mixing and decay

CP Violation in Mixing

 probability of oscillation from meson to anti-meson is different from the probability of oscillation from anti-meson to meson

$$\operatorname{Prob}(P^0 o ar{P}^0)
eq \operatorname{Prob}(ar{P}^0 o P^0)$$

- Mass eigenstates are not CP eigenstates
- ullet Charged-current semileptonic neutral meson decays $M,ar{M} o I^\pm X$

CP Violation in Decay

 decay amplitude of particle into the final state is different from the decay amplitude of its antiparticle into its final anti-state

$$\Gamma(M \to f) \neq \Gamma(\bar{M} \to \bar{f})$$

In charged meson (and all baryon) decays, where mixing effects are absent, this is the only possible source of CP asymmetries

CP Violation in Interference of Mixing and Decay

 occurs in case both meson and antimeson decay into the same final state

$$M \to f \qquad M \to \bar{M} \to f$$

8/41

CP Violation in Interference of Mixing and Decay

 occurs in case both meson and antimeson decay into the same final state

$$M \to f \qquad M \to \bar{M} \to f$$

CP Violation in Standard Model

Charged current part of Lagrangian for weak interactions of quarks

$$\mathcal{L}_{Y}^{q} = -rac{g}{\sqrt{2}} \bar{u}_{L_{i}}^{\prime} \gamma^{\mu} \delta_{ij} \bar{d}_{L_{j}}^{\prime} W_{\mu}^{+} + h.c.$$

■ interaction eigenvectors in term of mass eigenvectors $d'_L = V^{\dagger}_{dL} d_L$ and $\bar{u}'_L = V_{uL} u_L$

$$\mathcal{L}^q_Y = -rac{g}{\sqrt{2}}ar{u}_{Li}\gamma^\muar{V}_{ij}ar{d}_{Lj}W^+_\mu + h.c.,$$

• CKM matrix $V_{ij} = V_{uL}^{\dagger} V_{dL}$:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM Matrix

- Complex 3 × 3 unitary matrix
- only four parameters are independent 3 Euler mixing angles and one CP-violating CKM phase

$$\begin{split} V_{CKM} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-\imath\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{\imath\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-\imath\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{\imath\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{\imath\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{\imath\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{\imath\delta} & c_{23}c_{13} \end{pmatrix} \end{split}$$

Angle θ_{12} identified as Cabibbo angle

Wolfenstein parametrization

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 (1 + 4A^2) & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 + \frac{1}{2}A\lambda^4(1 - 2(\rho + i\eta)) & 1 - \frac{1}{2}A^4\lambda^4 \end{pmatrix} + \mathcal{O}(\lambda^5)$$
(2)

$$\begin{aligned} \lambda &= 0.22506 \pm 0.00050 \\ \mathbf{a} &A &= 0.811 \pm 0.026 \\ \mathbf{a} &\bar{\rho} &= \rho \left(1 - \frac{\lambda}{2} \right) = 0.124^{+0.019}_{-0.018} \\ \mathbf{a} &\bar{\eta} &= \eta \left(1 - \frac{\lambda}{2} \right) = 0.356 \pm 0.011 \end{aligned}$$

Unitarity Triangles

• unitarity $1 = V_{CKM} V_{CKM}^{\dagger}$:

• orthonormality of columns or rows in V_{CKM} expressed as

$$\sum_{\alpha=u,c,t} V_{\alpha i} V_{\alpha j}^* = \delta_{ij}, \ \sum_{i=d,s,b} V_{\alpha i} V_{\beta i}^* = \delta_{\alpha\beta}$$

One of triangles:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$
$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

Unitarity Triangles - Experimental Results

15/41 17/01/2019 Luká

Lukáš Novotný

Unitarity Triangles - Experimental Results

16/41

17/01/2019

Mixing of Neutral *B* Mesons

17/41

• flavour eigenstates of the B^0 meson and the B_s^0 meson:

$$egin{aligned} |B^0
angle &= egin{aligned} ar{b}d
angle & |B^0_s
angle &= egin{aligned} ar{b}s
angle \ ar{B}s^0
angle &= egin{aligned} |bs
angle & & egin{aligned} ar{B}s^0
angle &= egin{aligned} |bs
angle \ ar{B}s^0
angle &= egin{aligned} |bs
angle \ ar{b}s
angle \end{aligned}$$

Decay amplitudes of neutral meson (and anti-mesons) decays into final states:

$$egin{aligned} & \mathcal{A}_{f} = \left\langle f | \mathcal{H} | \mathcal{B}_{q}^{0}
ight
angle & \mathcal{A}_{ar{f}} = \left\langle ar{f} | \mathcal{H} | \mathcal{B}_{q}^{0}
ight
angle \ & ar{\mathcal{A}}_{f} = \left\langle f | \mathcal{H} | ar{\mathcal{B}}_{q}^{0}
ight
angle & ar{\mathcal{A}}_{ar{f}} = \left\langle ar{f} | \mathcal{H} | ar{\mathcal{B}}_{q}^{0}
ight
angle \end{aligned}$$

Time developement of the mass eigenstates

of B mesons

$$i\hbar\frac{\partial}{\partial t}\left(\begin{vmatrix}B^{0}(t)\rangle\\\bar{B}^{0}(t)\rangle\end{vmatrix}\right) = \boldsymbol{H}\left(\begin{vmatrix}B^{0}(t)\rangle\\\bar{B}^{0}(t)\rangle\end{vmatrix}\right) = \left(\boldsymbol{M} - \frac{i}{2}\boldsymbol{\Gamma}\right)\left(\begin{vmatrix}B^{0}(t)\rangle\\\bar{B}^{0}(t)\rangle\end{vmatrix}$$

- $\left|B^{0}(t)
 ight
 angle$ denotes the flavour state at t=0
- **Μ**, **Γ** hermitian matrices

$$\boldsymbol{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}, \ \boldsymbol{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}$$

- Mass terms: **M**, Decay matrix **Γ**
- CPT conserved:

$$M_{11} = M_{22} = M, \ \Gamma_{11} = \Gamma_{22} = \Gamma$$

 \blacksquare non-diagonal elements correspond to the $B^0_s-\bar{B}^0_s$ mixing

Time developement of the mass eigenstates

of B mesons

$$\Gamma = \frac{1}{2}(\Gamma_L + \Gamma_H), \qquad M = \frac{1}{2}(M_L + M_H)$$
$$\Delta \Gamma = \Gamma_L - \Gamma_H = 2|\Gamma_{12}|\cos\phi_s, \qquad \Delta m = M_H - M_L = 2|M_{12}|$$

Δm > 0, ΔΓ can have either signs (ΔΓ > 0 sign convention in SM)
 Solving eigenvalues problem:

$$(\Delta m)^2 - \frac{1}{4} (\Delta \Gamma)^2 = 4|M_{12}|^2 - |\Gamma_{12}|^2$$

 $\Delta m \Delta \Gamma = 4 \mathfrak{Re}(M_{12}\Gamma_{12})$

Time developement of the mass eigenstates of *B* mesons

Diagonalization of Hamiltonian leads to mass eigenstates:

$$\begin{aligned} |B_L\rangle &= p \left| B^0 \right\rangle + q \left| \bar{B}^0 \right\rangle \\ B_H\rangle &= p \left| B^0 \right\rangle - q \left| \bar{B}^0 \right\rangle \end{aligned} \tag{3}$$

(4)

Solution of the Schrödinger equation:

$$egin{aligned} |B_L(t)
angle &= e^{-iM_L t}e^{rac{-\Gamma_L}{2}t} \left|B_L(0)
ight
angle\,, \ |B_H(t)
angle &= e^{-iM_H t}e^{rac{-\Gamma_H}{2}t} \left|B_H(0)
ight
angle\,, \end{aligned}$$

Time developement of the flavor eigenstates of *B* mesons

• Time development of B^0 and \overline{B}^0 :

$$egin{aligned} & \left|B^{0}(t)
ight
angle &=rac{1}{2p}(\left|B_{L}(t)
ight
angle +\left|B_{H}(t)
ight
angle) \ & \left|ar{B}^{0}(t)
ight
angle &=rac{1}{2q}(\left|B_{L}(t)
ight
angle -\left|B_{H}(t)
ight
angle) \end{aligned}$$

Substituting the solution of Schrödinger equation:

$$|B^{0}(t)\rangle = \frac{1}{2p} \left\{ e^{-iM_{L}t} e^{\frac{-\Gamma_{L}}{2}t} |B_{L}(0)\rangle + e^{-iM_{H}t} e^{\frac{-\Gamma_{H}}{2}t} |B_{H}(0)\rangle \right\}$$

$$|\bar{B}^{0}(t)\rangle = \frac{1}{2q} \left\{ e^{-iM_{L}t} e^{\frac{-\Gamma_{L}}{2}t} |B_{L}(0)\rangle - e^{-iM_{H}t} e^{\frac{-\Gamma_{H}}{2}t} |B_{H}(0)\rangle \right\}$$

$$(6)$$

Time development of the flavor eigenstates of *B* mesons

• using
$$g_{\pm}(t) = \frac{1}{2} \left(e^{-iM_{L}t} e^{\frac{-\Gamma_{L}}{2}t} \pm e^{-iM_{H}t} e^{\frac{-\Gamma_{H}}{2}t} \right)$$
:
 $|B^{0}(t)\rangle = g_{+}(t) |B^{0}\rangle + \frac{q}{p}g_{-}(t) |\bar{B}^{0}\rangle$ $|\bar{B}^{0}(t)\rangle = g_{+}(t) |\bar{B}^{0}\rangle - \frac{p}{q}g_{-}(t) |B^{0}\rangle$

22/41 17/01/2019 Lukáš Novotný

Time development of the flavor eigenstates

of B mesons

$$|g_{\pm}(t)|^{2} = \frac{1}{2}e^{-\Gamma t}\left(\cosh\frac{\Delta\Gamma}{2}t\pm\cos\Delta mt\right)$$

$$g_{+}(t)g_{-}^{*}(t) = \frac{1}{2}e^{-\Gamma t}\left(-\sinh\frac{\Delta\Gamma}{2}t-i\sin\Delta mt\right)$$

$$g_{+}^{*}(t)g_{-}(t) = \frac{1}{2}e^{-\Gamma t}\left(-\sinh\frac{\Delta\Gamma}{2}t+i\sin\Delta mt\right)$$
(8)

Helpful parameter

$$\lambda_f = \frac{qA_f}{pA_f} = \eta_f e^{-i\phi_s}$$

23/41 17/01/2019 Lukáš Novotný

CP Violation in $B^0_s \rightarrow J/\psi \phi$

Branching ratio (decay rate)

$$\Gamma\left(B_{s}^{0}(t) \to f\right) = |A_{f}|^{2} e^{-\Gamma t} \left[\left(1 + |\lambda_{f}|\right) \cosh \frac{\Delta \Gamma_{s} t}{2} + \left(1 - |\lambda_{f}|\right) \cos \Delta M t + 2\mathcal{R}e\left(\lambda_{f}\right) \sinh \frac{\Delta \Gamma_{s} t}{2} - 2\mathcal{I}m\left(\lambda_{f}\right) \sin \Delta M t \right]$$
(9)

$$\begin{split} \Gamma\left(\bar{B}^{0}(t) \rightarrow f\right) &= \\ |A_{f}|^{2} \mathrm{e}^{-\Gamma t} \Bigg[(1+|\lambda_{f}|) \cosh \frac{\Delta \Gamma_{s} t}{2} - (1-|\lambda_{f}|) \cos \Delta M t \\ &+ 2\mathcal{R}e\left(\lambda_{f}\right) \sinh \frac{\Delta \Gamma_{s} t}{2} + 2\mathcal{I}m\left(\lambda_{f}\right) \sin \Delta M t \Bigg] \end{split}$$

(10)

 ${\cal CP}$ -violating phase ϕ_s in decay $B^0_s
ightarrow J/\psi\phi$

25/41 17/01/2019 Lukáš Novotný

CP Violation in $B_s^0 \rightarrow J/\psi\phi$

\mathcal{CP} -violating phase ϕ_s in decay $B_s^0 \to J/\psi\phi$

• CP eigenvalues of the $J/\psi\phi$ final state are $\eta_f = \pm 1$, depending on the total angular momentum *L*:

$$\mathcal{CP} \left| J/\psi \phi \right\rangle = \eta_f \left| J/\psi \phi \right\rangle = (-1)^L \left| J/\psi \phi \right\rangle$$

\mathcal{CP} -violating phase ϕ_s in decay $B_s^0 \to J/\psi\phi$

• CP eigenvalues of the $J/\psi\phi$ final state are $\eta_f = \pm 1$, depending on the total angular momentum *L*:

$$\mathcal{CP} \left| J/\psi \phi \right\rangle = \eta_f \left| J/\psi \phi \right\rangle = (-1)^L \left| J/\psi \phi \right\rangle$$

■ B_s^0 is a spinless particle, total angular momentum: $\mathcal{J} = 0$ ■ Adding the spin of the the J/ψ and ϕ results into total spin $S \in \{0, 1, 2\}$

conservation of angular momentum: L + S = 0

\mathcal{CP} -violating phase ϕ_s in decay $B_s^0 \to J/\psi\phi$

• CP eigenvalues of the $J/\psi\phi$ final state are $\eta_f = \pm 1$, depending on the total angular momentum *L*:

$$\mathcal{CP} \left| J/\psi \phi \right\rangle = \eta_f \left| J/\psi \phi \right\rangle = (-1)^L \left| J/\psi \phi \right\rangle$$

B $_{s}^{0}$ is a spinless particle, total angular momentum: $\mathcal{J} = 0$ Adding the spin of the the J/ψ and ϕ results into total spin

$$S\in\{0,1,2\}$$

- conservation of angular momentum: L + S = 0
- \mathcal{CP} even states: $\eta_f = 1$, L = 0, 2
 - parallel (||) state: J/ψ and ϕ parallel with respect to the direction of their momentum
 - zero state: polarisation of J/ψ perpendicular to ϕ perpendicular with respect to the direction of their momentum
- \mathcal{CP} odd states: $\eta_f = -1$, L = 1

${\cal CP}$ -violating phase ϕ_s in decay $B^0_s \to J/\psi\phi$

• CP eigenvalues of the $J/\psi\phi$ final state are $\eta_f = \pm 1$, depending on the total angular momentum *L*:

$$\mathcal{CP} \left| J/\psi \phi \right\rangle = \eta_f \left| J/\psi \phi \right\rangle = (-1)^L \left| J/\psi \phi \right\rangle$$

B $_{s}^{0}$ is a spinless particle, total angular momentum: $\mathcal{J} = 0$

Adding the spin of the the J/ψ and ϕ results into total spin

$$S \in \{0,1,2\}$$

- conservation of angular momentum: L + S = 0
- \mathcal{CP} even states: $\eta_f = 1, \ L = 0, 2$
 - parallel (||) state: J/ψ and ϕ parallel with respect to the direction of their momentum
 - zero state: polarisation of J/ψ perpendicular to ϕ perpendicular with respect to the direction of their momentum
- \mathcal{CP} odd states: $\eta_f = -1$, L = 1
 - perpendicular (\perp) state: polarisation of J/ψ perpendicular to ϕ and parallel with respect to the direction of their momentum

B_s^0 differential decay rate - time part

$$\begin{aligned} \frac{\mathrm{d}\Gamma\left(B_{s}^{0}\rightarrow J/\psi\phi\right)}{\mathrm{d}t\mathrm{d}\Omega} &= \sum_{i=1}^{6}A_{i}(t)f_{i}(\cos\theta,\varphi,\cos\psi) \\ |A_{0}(t)|^{2} &= |A_{0}(0)|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \sin\phi_{s}\sin\left(\Delta m_{s}t\right)\right] \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}(0)|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \sin\phi_{s}\sin\left(\Delta m_{s}t\right)\right] \\ |A_{\perp}(t)|^{2} &= |A_{\perp}(0)|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - \sin\phi_{s}\sin\left(\Delta m_{s}t\right)\right] \\ \Im(A_{\parallel}^{*}(t)A_{\perp}(t)) &= |A_{\parallel}(0)| |A_{\perp}(0)| e^{-\Gamma_{s}t}\left[-\cos\left(\delta_{\perp}-\delta_{\parallel}\right)\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \sin\left(\delta_{\perp}-\delta_{\parallel}\right)\cos\left(\Delta m_{s}t\right) - \cos\phi_{s}\sin\left(\Delta m_{s}t\right)\right] \\ \Re(A_{0}^{*}(t)A_{\parallel}(t)) &= |A_{0}(0)| |A_{\parallel}(0)| e^{-\Gamma_{s}t}\cos\delta_{\parallel}\left[\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \sin\phi_{s}\sin\left(\Delta m_{s}t\right)\right] \\ \Im(A_{0}^{*}(t)A_{\perp}(t)) &= |A_{0}(0)| |A_{\perp}(0)| e^{-\Gamma_{s}t}\left[-\cos\delta_{\perp}\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \sin\phi_{s}\sin\left(\Delta m_{s}t\right)\right] \\ \Im(A_{0}^{*}(t)A_{\perp}(t)) &= |A_{0}(0)| |A_{\perp}(0)| e^{-\Gamma_{s}t}\left[-\cos\delta_{\perp}\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \sin\delta_{\perp}\cos\left(\Delta m_{s}t\right) - \cos\delta_{\perp}\cos\phi_{s}\sin\left(\Delta m_{s}t\right)\right] \end{aligned}$$

CP Violation in $B_s^0 \rightarrow J/\psi\phi$

B_s^0 differential decay rate - angular part

28/41 17/01/2019 Lukáš Novotný

CP Violation in $B_s^0 \rightarrow J/\psi\phi$

B_s^0 differential decay rate - angular part

i	$A_{i}\left(\mathrm{t}\right)$	$\bar{A}_{i}\left(\mathrm{t}\right)$	$f_i\left(\cos\theta,\varphi,\cos\psi\right)$
1	$ A_0(t) ^2$	$\left \bar{A}_0(t) \right ^2$	$\frac{9}{32\pi}2\cos^2\psi\left(1-\sin^2\theta\cos^2\varphi\right)$
2	$\left A_{\parallel}(\mathrm{t})\right ^{2}$	$\left \bar{A}_{\parallel}(t)\right ^2$	$\frac{9}{32\pi}\sin^2\psi\left(1-\sin^2\theta\sin^2\varphi\right)$
3	$ A_{\perp}(\mathrm{t}) ^2$	$\left \bar{A}_{\perp}(t)\right ^2$	$\frac{9}{32\pi}\sin^2\psi\sin^2\theta$
4	$\Im (A_{\parallel}^{*}(t)A_{\perp}(t))$	$\Im \left(\bar{A}_{\parallel}^{*}(t) \bar{A}_{\perp}(t) \right)$	$-\frac{9}{32\pi}\sin^2\psi\sin 2\theta\sin\varphi$
5	$\Re \left(A_0^*(t) A_{\parallel}(t) \right)$	$\Re \left(\bar{A}_{0}^{*}(t) \bar{A}_{\parallel}(t) \right)$	$\frac{9}{32\pi\sqrt{2}}\sin 2\psi\sin^2\theta\sin 2\varphi$
6	$\Im (A_0^*(t)A_\perp(t))$	$\Im \left(\bar{A}_0^*(t) \bar{A}_\perp(t) \right)$	$\frac{9}{32\pi\sqrt{2}}\sin 2\psi\sin 2\theta\cos \varphi$

- ϕ is a vector meson the K^+K^- system is in a P-wave configuration
- Detected K^+K^- results from a non-resonant contribution or decay of the $f_0(980)$ which is a scalar meson
- In both cases: S-wave configuration
- Introduce the S-wave amplitude $A_s(t)$ with phase δ_s
- S-wave amplitude can also interfere with the P-wave
- The S-wave contributions have also its angular distributions

$$rac{\mathrm{d} \Gamma(B^0_s
ightarrow J/\psi \phi)}{\mathrm{d} t \mathrm{d} \Omega} = \sum_{i=1}^{10} A_i(t) f_i(\cos heta, arphi, \cos \psi)$$

\boldsymbol{k}	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \right]$	$2\cos^2\psi_T(1-\sin^2 heta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2} \left[(1+\cos\phi_{s}) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_{s}) e^{-\Gamma_{\rm H}^{(s)}t} \right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ } \tag{1}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\mathrm{L}}^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_{\mathrm{H}}^{(s)} t} \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_s$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \right] $	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) \frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp} - \delta_S)}{\left[(1 - \cos\phi_s)e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s)e^{-\Gamma_H^{(s)}t}\right]}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(\phi)}t} - e^{-\Gamma_{\rm L}^{(\phi)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

$_{k}$	$\mathcal{O}^{(k)}(t)$	$\pm ightarrow B_s/ar{B_s}$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos \phi_s) e^{-\Gamma_L^{(s)}t} + \right]$	$(1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^2 \left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + \right]$	$\left. \left. \left(1 - \cos \phi_s \right) e^{-\Gamma_{\rm H}^{(s)} t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right] \right.$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^2 \left[(1 - \cos \phi_s) e^{-\Gamma_L^{(s)}t} - \right]$	$+ (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s $	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel} $		$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} - \right]$	$\left[(1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm E}^{(s)}t}]$	$s^{(s)}t$) $\cos(\delta_{\perp} - \delta_{ }) \sin \phi_s$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_\perp - \epsilon))$	$\delta_{\parallel} \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos \phi_s \sin(\Delta m_s t))$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_L^{(0)}t} - e^{-\Gamma_E^{(0)}t})]$	$(t^{t})\cos\delta_{\perp}\sin\phi_{s}$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-1}$	$\int_{s}^{s} t (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos \phi_s) e^{-\Gamma_L^{(s)}t} + \right]$	$-(1+\cos\phi_s)e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t}]$	$(\delta_{\parallel} - \delta_{S}) \sin \phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} -$	$\delta_S \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))$	
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp} - \delta_S)$	-	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$(1 - \cos \phi_s) e^{-\Gamma_L^{(s)}t}$ -	$+ (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \Big]$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_H^{(s)}t} - e^{-\Gamma_L^{(s)}t}]$	$(b)^{t} \sin \delta_S \sin \phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T \left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-}$	$\Gamma_s t (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

35/41

Our analysis: 5 dimensional fit: mass, lifetime, 3 angles

Results

$$\begin{split} \phi_s &= -0.055 \pm 0.053 \text{ (stat.)} \pm 0.0069 \text{ (syst.)} rad \\ \Delta\Gamma_s &= 0.080 \pm 0.007 \text{ (stat.)} \pm 0.0024 \text{ (syst.)} \text{ ps}^{-1} \\ \Gamma_s &= 0.667 \pm 0.002 \text{ (stat.)} \pm 0.0010 \text{ (syst.)} \text{ ps}^{-1} \\ |A_{\parallel}(0)|^2 &= 0.219 \pm 0.002 \text{ (stat.)} \pm 0.0012 \text{ (syst.)} \\ |A_0(0)|^2 &= 0.518 \pm 0.002 \text{ (stat.)} \pm 0.0028 \text{ (syst.)} \\ |A_s(0)|^2 &= 0.053 \pm 0.005 \text{ (stat.)} \pm 0.0072 \text{ (syst.)} \\ \delta_{\perp} &= 2.767 \pm 0.161 \text{ (stat.)} \pm 0.00390 \text{ (syst.)} rad \\ \delta_{\parallel} &= 3.123 \pm 0.140 \text{ (stat.)} \pm 0.0074 \text{ (syst.)} rad \\ \delta_{\perp} - \delta_s &= -0.113 \pm 0.025 \text{ (stat.)} \pm 0.0079 \text{ (syst.)} rad. \end{split}$$

40/41 17/01/2019 Lukáš Novotný

