Hrátky s Herwigem

Miroslav Myška

Miroslav Myška

Miroslav Myška Maš

Proton-proton collision

What everything can happen?

 $\sigma_{\text{tot}} = \sigma_{\text{elastic}} + \sigma_{\text{single}-\text{diffractive}} + \sigma_{\text{double}-\text{diffractive}} + \dots + \sigma_{\text{non}-\text{diffractive}}$

Detector

20-25% elastic 25-35% diffractive 40-55% non-diffractive

using optical theorem and Regge theory we can write for a process

where $\alpha(0)$ is so-called intercept of a Regge trajectory

3 detector types:

- Roman Pots with microstrip silicon detectors used to detect protons
- Cathode Strip Chambers and GEM (gas electron multiplier) Detectors that will measure the jets of forward-going particles that emerge from collisions when the protons break apart.

minimum bias

- Thin polystyrene scintillation counters, the total of 24 counter segments
- Located at ± 3.6 meters between inner tracking detector and calorimeter
- > Pseudo-rapidity acceptance: $2.07 < |\eta| < 3.86$

8 segments in the inner octagonal ring, 4 segments in the outer ring

minimum bias

Components: primary process and underlying event

Primary process – factorization theorem

Inclusive hard jet cross section in pQCD:

http://hepdata.cedar.ac.uk/pdf/pdf3.html

https://lhapdf.hepforge.org/

http://madgraph.phys.ucl.ac.be/

Higher orders of perturbative expansion

LO: Pythia & Herwig

NLO: Powheg, MC@NLO

LO + external legs: HIJING, Alpgen

Hrátky s Herwigem

Forward (pseudo)rapidity gap, $\Delta \eta^F$

 $\Delta\eta^F$ defined as the larger one of two eta-distances from the last particle to the edge of the detector acceptance

Forward (pseudo)rapidity gap, $\Delta \eta^F$

- Diffraction-sensitive variable
- Non-diffractive (ND) events populate most of the acceptance, $\Delta \eta^F \rightarrow 0$
- Single- (SD) and double- (DD) diffractive events leaves empty regions, not only in the central region, Δη^F ~ const.

Forward (pseudo)rapidity gap

- Herwig++/H7 missmodeling of $\Delta \eta^F$ found "bumb"
 - no diffractive component of minimum bias model so far sharp decrease of $\Delta \eta^F$ expected

 \rightarrow improvement under construction

Multiple-proton interactions (MPI)

Soft MPI = remnant-remnant scattering

Basic building blocks of MPI in Herwig

Assumptions:

► the distribution of partons in hadrons factorizes with respect to the b and x dependence ⇒ average number of parton collisions:

$$\begin{split} \bar{n}(\vec{b},s) &= L_{\text{partons}}(x_1, x_2, \vec{b}) \otimes \sum_{ij} \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &= \sum_{ij} \frac{1}{1 + \delta_{ij}} \int dx_1 dx_2 \int d^2 \vec{b}' \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &\times D_{i/A}(x_1, p_t^2, |\vec{b}'|) D_{j/B}(x_2, p_t^2, |\vec{b} - \vec{b}'|) \\ &= \sum_{ij} \frac{1}{1 + \delta_{ij}} \int dx_1 dx_2 \int d^2 \vec{b}' \int dp_t^2 \frac{d\hat{\sigma}_{ij}}{dp_t^2} \\ &\times f_{i/A}(x_1, p_t^2) G_A(|\vec{b}'|) f_{j/B}(x_2, p_t^2) G_B(|\vec{b} - \vec{b}'|) \\ &= A(\vec{b}) \sigma^{\text{inc}}(s; p_t^{\text{min}}) . \end{split}$$

• at fixed impact parameter b, individual scatterings are independent (leads to the Poisson distribution)

Basic building blocks of MPI in Herwig

From assumptions:

- \succ independent scatters at fixed impact parameter **b**
- > factorization of **b** and **x** dependence

$$\langle n(b,s) \rangle = A(b)\sigma^{inc}(s)$$

where A(b) is partonic overlap function of the colliding hadrons

= two main parameters μ , p_t^{min}

Multiple-proton interactions (MPI)

Color flow – NEW model (14 diagrams)

Color flow – NEW model

NO COLOR RECONNECTION

Color Reconnection

e.g.

Non perturbative effects like colour reconnection start to be important source of uncertainties in precise LHC measurements (for example top mass).

Top quark mass: precision matters

- Our aim is to introduce the space-time picture in Herwig 7
- notice a similar effort in Pythia [S. Ferreres-Solé, T. Sjöstrand, Eur.Phys.J. C78 (2018) no.11, 983]

26

Basic building blocks of MPI in Herwig - Colour connection

Extending the hadronization model in Herwig(++):

QCD parton showers provide *pre-confinement* ⇒ colour-anticolour pairs form highly excited hadronic states, the *clusters*

Basic building blocks of MPI in Herwig - Plain colour reconnection

More CR ideas in H7 for example: Colour Reconnection from Soft Gluon Evolution, S. Gieseke, P. Kirchgaeßer, S. Plätzer, A. Siodmok, JHEP 1811 (2018) 149 \rightarrow see Patrick's talk

Cecececee (000000000

Implementation

Allow CR if the cluster mass decreases,

 $M_{il} + M_{ki} < M_{ii} + M_{kl},$

where $M_{ab}^2 = (p_a + p_b)^2$ is the (squared) cluster mass

 Accept alternative clustering with probability *p*_{reco} (model parameter) \Rightarrow this allows to switch on CR smoothly

No information about space-time used \rightarrow potential problems with products of long lived particles

Extending the hadronization model in Herwig(++):

- QCD parton showers provide *pre-confinement* \Rightarrow colour-anticolour pairs form highly excited hadronic states, the *clusters*
- CR in the cluster hadronization model: allow *reformation* of clusters, *e.g.* (il) + (jk)
- Physical motivation: exchange of soft gluons during non-perturbative hadronization phase

Space-time Model - shower

G. C. Fox, S. Wolfram, A Model for Parton Showers in QCD Nucl. Phys. B168 (1980) 285

Herwig7:

➢ fortranHerwig-like algorithm

G. Corcella et al., JHEP 0101 (2001) 010, chapter 3.8

➤ Mean lifetime

virtuality dependence - interpolation between on-shell and high virtuality

$$\tau(q^2) = \frac{\hbar\sqrt{q^2}}{\sqrt{(q^2 - M^2)^2 + (\Gamma q^2/M)^2}}$$

 Distance travelled for proper lifetime

Prob(proper time > t^*) = exp($-t^*/\tau$)

Space-time Model - smearing of scatter points in b space

- Each scatter (MPI) gets its point in xy plane (inspired by heavy ion collision)
- Shower evolves partons further in xyz
- Motivation to cluster "close" partons

Issues:

- → Impact parameter
- → Proton profile
 - Black disk
 - Gaussian
 - Overlap function (Bessel)
- → Proton mean radius (r_0)
- → Proton remnants

Space-time Model - smearing of scatter points in *b* space

Space-time Model - sources of displacement - summary

- ➤ "final" state partons in shower are further allowed to propagate
- minV (minimal virtuality) so far a free parameter
- gluons are then forced to split to qqbar pair

Space-time Model - preliminary results

First idea: critical radius

 \rightarrow plain CR + critical radius (new parameter)

Not tuned (just to see the effect), MPI smearing only - no shower ST

Space-time Model - preliminary results

First idea: critical radius

 \rightarrow plain CR + critical radius (new parameter)

Not tuned (just to see the effect), MPI smearing only - no shower ST

Space-time Model - preliminary results

First idea: critical radius

 \rightarrow plain CR + critical radius (new parameter)

Not tuned (just to see the effect), **MPI + shower ST**, $p_{reco} = 1$ (same as previous slides)

Summary and outlook

- We introduced space-time picture to MPI (probe b from the overlap function) and to the Parton Shower (based on mean life-time)
- > We study sources of displacement and its dependence on the main parameters
- We introduced space-time information to the simplest CR model in Herwig and studied its influence on MB and UE event data (without any tuning).
- We plan to implement more CR models based on space-time picture
- Space-time picture could serve us as a starting point to study collective effects in p-p collisions

Backup slides

Soft MPI

So far only hard MPI. Now extend to soft interactions with

 $\chi_{\text{tot}} = \chi_{QCD} + \chi_{\text{soft}}.$

Similar structures of eikonal functions:

$$\chi_{\rm soft} = \frac{1}{2} A_{\rm soft}(\vec{b}) \sigma_{\rm soft}^{\rm inc}$$

Simplest possible choice: $A_{\text{soft}}(\vec{b};\mu) = A_{\text{hard}}(\vec{b};\mu) = A(\vec{b};\mu)$. Then

$$\chi_{\text{tot}} = \frac{A(\vec{b}; \mu)}{2} \left(\sigma_{\text{hard}}^{\text{inc}} + \sigma_{\text{soft}}^{\text{inc}} \right) .$$

One new parameter $\sigma_{\text{soft}}^{\text{inc}}$.

Taking the Tevatron data together with the wide range of possible values of σ_{tot} considered at LHC, we see that this model is to simple.

Soft MPI

Extension: Relax the constraint of identical overlap functions:

$$A_{soft}(b) = A(b, \mu_{soft})$$

Fix the two parameters μ_{soft} and $\sigma_{\text{soft}}^{\text{inc}}$ in

$$\chi_{\text{tot}}(\vec{b},s) = \frac{1}{2} \left(A(\vec{b};\mu)\sigma^{\text{inc}} \text{hard}(s;p_t^{\text{min}}) + A(\vec{b};\mu_{\text{soft}})\sigma_{\text{soft}}^{\text{inc}} \right)$$

from two constraints. Require simultaneous description of σ_{tot} and b_{el} (measured/well predicted),

$$\begin{split} \sigma_{\rm tot}(s) &\stackrel{!}{=} 2 \int \mathrm{d}^2 \vec{b} \left(1 - \mathrm{e}^{-\chi_{\rm tot}(\vec{b},s)} \right) \;, \\ b_{\rm el}(s) &\stackrel{!}{=} \int \mathrm{d}^2 \vec{b} \frac{b^2}{\sigma_{\rm tot}} \left(1 - \mathrm{e}^{-\chi_{\rm tot}(\vec{b},s)} \right) \;. \end{split}$$

Sum up:

 \Rightarrow at the end of the day we have two main parameters: μ^2, p_t^{min} .