STAR analysis on open charm reconstruction with KF Particle Finder

Michal Kocan Supervisor: RNDr. Petr Chaloupka, Ph.D.

WEJCF, Bílý Potok, 18.1.2019

Outline

- STAR and KF Particle Finder
- TMVA optimization
- Results
- Comparison with standard method
- Summary

STAR

Concept of KF Particle

KFParticle Lambda(P, Pi);	// construct anti Lambda
Lambda.SetMassConstraint(1.1157);	// improve momentum and mass
KFParticle Omega(K, Lambda);	// construct anti Omega
PV -= (P; Pi; K);	// clean the primary vertex
PV += Omega;	// add Omega to the primary vertex
Omega.SetProductionVertex(PV);	<pre>// Omega is fully fitted</pre>
(K; Lambda).SetProductionVertex(Omega);	// K, Lambda are fully fitted
(P; Pi).SetProductionVertex(Lambda);	// p, pi are fully fitted

$$\mathbf{r} = \{ x, y, z, p_{x}, p_{y}, p_{z}, E \}$$
State vector
$$C = \langle \mathbf{rr}^{T} \rangle = \begin{bmatrix} \sigma_{\mathbf{x}}^{2} & C_{xy} & C_{xz} & C_{xp_{x}} & C_{xp_{y}} & C_{xp_{z}} & C_{xE} \\ C_{xy} & \sigma_{\mathbf{y}}^{2} & C_{yz} & C_{yp_{x}} & C_{yp_{y}} & C_{yp_{z}} & C_{yE} \\ C_{xz} & C_{yz} & \sigma_{\mathbf{z}}^{2} & C_{zp_{x}} & C_{zp_{y}} & C_{zp_{z}} & C_{zE} \\ C_{xp_{x}} & C_{yp_{x}} & C_{zp_{x}} & \sigma_{\mathbf{p}_{\mathbf{x}}}^{2} & C_{p_{x}p_{y}} & C_{p_{x}p_{z}} & C_{p_{x}E} \\ C_{xp_{y}} & C_{yp_{y}} & C_{zp_{y}} & C_{p_{x}p_{y}} & C_{p_{y}p_{z}} & C_{p_{x}E} \\ C_{xp_{y}} & C_{yp_{y}} & C_{zp_{y}} & C_{p_{x}p_{y}} & \sigma_{\mathbf{p}_{\mathbf{y}}}^{2} & C_{p_{y}p_{z}} & C_{p_{y}E} \\ C_{xp_{z}} & C_{yp_{z}} & C_{zp_{z}} & C_{p_{x}p_{z}} & \sigma_{\mathbf{p}_{\mathbf{y}}}^{2} & C_{p_{y}p_{z}} & C_{p_{y}E} \\ C_{xE} & C_{yE} & C_{zE} & C_{p_{x}E} & C_{p_{y}E} & \sigma_{\mathbf{p}_{z}}^{2} & C_{p_{y}E} \\ \end{array} \right]$$

- 1. Covariance matrix contains essential information about tracking and detector performance.
- 2. The method for mathematically correct usage of covariance matrices is provided by the KF Particle package based on the Kalman filter (KF) developed by FIAS group^{1,2} primarily for CBM and ALICE.
- 3. Heavy mathematics requires fast and vectorised algorithms.
- 4. Mother and daughter particles have the same state vector and are treated in the same way.
- 5. The natural and simple interface allows to reconstruct easily rather complicated decay chains.
- 6. The package is geometry independent and can be easily adapted to different experiments.

1. KF Particle — S. Gorbunov, "On-line reconstruction algorithms for the CBM and ALICE experiments," Dissertation thesis, Goethe University of Frankfurt, 2012, http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/29538

2. KF Particle Finder — M. Zyzak, "Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR," Dissertation thesis, Goethe University of Frankfurt, 2016, http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/41428

KF Particle Finder

Full online event reconstruction and physics analysis in CBM at 10⁷ interaction rate. Plan to use in STAR for physics analysis as well as in HLT for monitoring at 10³ collisions/s.

Cuts on event and tracks

- vertex position in beam direction |Vz| < 6 cm
- correlation of primary vertices reconstructed using TPC and VPD $|V_{z,VPD} V_{z,TPC}| < 3 \text{ cm}$
- tracks have hits in both PIXEL layers and at least one of the IST or SSD layer
- 15 space points in the TPC
- track pseudorapidity $|\eta| < 1$
- PID:
 - pt > 0.5 GeV/c (it will be changed in a future)
 - TPC: |nσπ| < 3, |nσK| < 2, |nσp| < 3
 - TOF: |nσπ| < 3, |nσK| < 2, |nσp| < 3

- Instead of using DCA and pointing angle θ, KF Particle is using Chi-square
 - Chi-square primary criterion for distinguish between primary and secondary tracks
 - Chi-square fit criterion calculated by KF Particle mathematics in the candidate fit, if trajectories of daughter particles intersect within their errors
 - Chi-square topo criterion characterizes whether the particle is produced in the primary vertex region
 - distance from the decay point of the candidate to the primary vertex normalized on the error I/ΔI

TMVA optimization

- trained for: D0, D0KK, D04, D+, Ds, DsPhi and Lc and applied also on antiparticles
- We are using open cuts for reconstruction candidate
- BDT method is used for cut optimization
- As the background the side band method is used (not all candidates are used)
- As the signal pure signal was simulated (from 50k to 8k for different particles)

Boost Decision Tree

- For each track we used 8 parameters: pt, 6 PID parameters, Chi-square primary
- For mother particle: I/ΔI, Chi-square topo, Chi-square fit
- -> from 19 to 35 parameters is used
- For D0, D0KK and D+ TMVA is now optimized for each centrality bin
- Lc, Ds and D04 are optimized in regions: 0-10, 10-40, 40-80
- BDT cut is chosen based on significance scan on real data

Test on wrong sign combination

- wrong sign combination were constructed with the same TMVA weights files and same cuts
- no peak-like structure is observed -> no bias

Significance based on daughters training parameters

D0 significance

	S/B	Significance
D0 –> KPi	1.13	293
D0 -> KK	0.59	53.9
D0 -> KPiPiPi	3.09	27.1
DPlus -> KPiPi	3.64	125
Ds -> PhiPi -> KKPi	11.1	30
Lc -> PKPi	0.57	12.1

Comparison of standard method with KF Particle Finder

- for D^0 , D^+ and L_c
- Analysis on the same data
- both trained with TMVA
- on HFT Analysis Meeting in April (Maksym, Sooraj, Guannan)

Decay	year	Signal	Significance	Pt
D ⁰ →Kπ	2014	10393	70	0-10 GeV/c
		5774	45	
$D^{\pm} \rightarrow K \pi \pi$	2014	1357	30	1 10 CoV/c
	2014	774	25	1-10 Gev/C
$\Lambda_{c^{\pm}} \rightarrow pK\pi$	2014	261	11.0	
		122	8.3	3-10 GeV/c
	2016	459	9.6	
	2010	337	7.6	

- Results obtained with KF Particle Finder are compared with the standard reconstruction approach by Sooraj and Xinyue.
- KF Particle Finder allows to get 1.5-2 times more signal with 1.2-1.5 times better significance reconstructed in all compared channels due to better utilisation of the data.

- 1. Performance comparison of D^0 and D^{\pm} was done on selected same runs of year 2014. For Λ_c^{\pm} the full statistics was used.
- 2. The standard method for D[±] gain of using low cut on $p_t>0.3$ GeV/c of the daughter particles. However, FemtoDst format does not allow to use low-pt tracks for KF Particle Finder, comparison is shown for $p_t>0.5$ GeV/c.

Summary

- TMVA procedure and results with KF Particle Finder were presented
- KF Particle Finder with TMVA optimization shows big improvements in significance
- KF Particle Finder vs Standard reconstruction methods was discussed

One more thing...

EJČF, rok nástupu 2012

The STARs

Thank You for EVERYTHING

Zuzka Moravcov Olí Matonoha	vá Lu	Lukáš Kramárik		Alča Harlenderová
Maty Vozák	Doc. Jarosl	Doc. Jaroslav Bielčík, Ph.D		Marek Matas
Martin Kocmánek	David Horák	Radek N	ovotný	Rob Ličeník
Dáša Bendová		Lukáš Holub Zbyněk Nguyen		Zbyněk Nguyen
P Jakub Kvapil	alo Federič Jaku	ıb Kubát	RNDr.	Petr Chaloupka, Ph.D.
Monča Robotková	Honza Vaněk	Tomáš Tr	uhlář	Filip Nechanský
Miro Šimko	Alča Zemanová	Miro Šaur		OTHERS