Study of jet shapes in Monte-Carlo generator JEWEL at RHIC

Bc. Veronika Agafonova Supervisor: RNDr. Jana Bielčíková, Ph.D.

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering Experimental Nuclear and Particle Physics

January, 17, 2019

Bc. V. Agafonova (CTU in Prague) Study of jet shapes in JEWEL at RHIC

Overview

2 Jet shapes

æ

< 回 > < 三 > < 三 >

Figure : RHIC complex. 1 - Electron Beam Ion Source (EBIS), 2 - Linear Accelerator (Linac), 3 - Booster Synchrotron, 4 - Alternating Gradient Synchrotron, 5 - AGS-to-RHIC Line, 6 - RHIC [1].

 [1] https://www.bnl.gov/rhic/
 Image: CTU in Prague)
 Study of jet shapes in JEWEL at RHIC
 January, 17, 2019
 3 / 29

STAR

The Solenoidal Tracker at RHIC

Figure : STAR detector system [2].

[2] https://www.star.bnl.gov/

Bc. V. Agafonova (CTU in Prague)

Study of jet shapes in JEWEL at RHIC

January, 17, 2019 4 / 29

- 3

<ロ> (日) (日) (日) (日) (日)

Jet

A narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in particle physics or heavy-ion experiment

Bc. V. Agafonova (CTU in Prague)

In order to understand the mechanisms of energy loss of partons in the medium and the properties of the medium itself, one should measure the modifications of the jet yield and fragmentation relative to p+p collisions. For this aim different jet shape observables are used:

- Radial moment g
- Momentum dispersion $p_T D$
- LeSub
- Mass etc.

The **angularity** g measures the radial energy profile of the jet. The radial moment is given by the equation:

$$g = \sum_{i \in jet} \frac{p_{\rm T}^{\rm i}}{p_{\rm T, jet}} |\Delta R_{\rm i, jet}|$$
(1)

where ρ_T^i represents the momentum of the *i*th constituent and $\Delta R_{i,jet}$ is the distance in $\eta \times \phi$ plane between the constituent *i* and the jet axis [4].

[4] S. Acharya et al. Medium modification of the shape of small-radius jets in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV,

 JHEP 10:139, 2018
 Image: CTU in Prague
 Study of jet shapes in JEWEL at RHIC
 January, 17, 2019
 7 / 29

The **momentum dispersion** $p_T D$ measures the second moment of the constituent p_T distribution in the jet. It is defined as follows [4]:

$$p_T D = \frac{\sqrt{\sum_{i \in jet} p_{\mathrm{T,i}}^2}}{\sum_{i \in jet} p_{\mathrm{T,i}}}.$$
(2)

[4] S. Acharya et al. Medium modification of the shape of small-radius jets in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$, JHEP 10:139, 2018

Bc. V. Agafonova (CTU in Prague)

Study of jet shapes in JEWEL at RHIC

January, 17, 2019 8 / 29

LeSub

The difference of the leading track p_T ($p_{T,track}^{lead}$) and sub-leading track p_T ($p_{T,track}^{sublead}$) or *LeSub* is defined as [4]:

$$LeSub = p_{T,track}^{lead} - p_{T,track}^{sublead}.$$
 (3)

Figure : An example of jet pair in Pb+Pb collision at $\sqrt{s_{NN}} = 2.76$ TeV [5].

Jet shapes

Figure : Jet shape distributions in 0–10% central Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV for R = 0.2 in range of jet $p_{\rm T,jet}^{\rm ch}$ of 40–60 GeV/*c* compared to JEWEL with and without recoils with different subtraction methods. The colored boxes represent the experimental uncertainty on the jet shapes [4].

[4] S. Acharya et al. Medium modification of the shape of small-radius jets in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$,

 JHEP 10:139, 2018
 Image: CTU in Prague
 Study of jet shapes in JEWEL at RHIC
 January, 17, 2019
 10 / 29

Anti-kT jet finding algorithm

- Cluster type jet finding algorithm —> based on successive pair-wise recombination of particles.
- The hard particle is found first.
- The algorithm:
 - Find the minimum distances via

$$d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \frac{\Delta_{ij}^2}{R^2},$$
(4)

$$d_{iB} = k_{ti}^{-2},\tag{5}$$

where $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i + \phi_j)^2$.

3 K K 3 K 3

Anti-kT jet finding algorithm

- Cluster type jet finding algorithm —> based on successive pair-wise recombination of particles.
- The hard particle is found first.
- The algorithm:
 - Find the minimum distances via

$$d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \frac{\Delta_{ij}^2}{R^2},$$
(4)

$$d_{iB} = k_{ti}^{-2},\tag{5}$$

where $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i + \phi_j)^2$.

♦ Find the minimum distance d_{\min} between all the d_{ij} and d_{iB} .

Bc. V. Agafonova (CTU in Prague) Study of jet shapes in JEWEL at RHIC

January, 17, 2019 11 / 29

Anti-kT jet finding algorithm

- Cluster type jet finding algorithm \longrightarrow based on successive pair-wise recombination of particles.
- The hard particle is found first.
- The algorithm:
 - Find the minimum distances via

$$d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \frac{\Delta_{ij}^2}{R^2}, \tag{4}$$

$$d_{iB} = k_{ti}^{-2},\tag{5}$$

where $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i + \phi_j)^2$.

- ♦ Find the minimum distance d_{\min} between all the d_{ij} and d_{iB} .
- Repeat the first two steps until no particles left.

[3] M. Cacciari, G. P. Salam, Dispelling the N^3 myth for the k_t jet-finder. Phys. Lett. B 641:57-61, 2006 $r = 10^{-10}$

Bc. V. Agafonova (CTU in Prague)	Study of jet shapes in JEWEL at RHIC	January, 17, 2019	11 / 29
----------------------------------	--------------------------------------	-------------------	---------

JEWEL

Jet Evolution With Energy Loss

Name of parameter	Name in JEWEL	Value
Parton Distribution Function set	PDFSET	10100
Number of events	NEVENT	100000
Mass number of Au nucleus	MASS	197
The CMS energy of the colliding system	SQRTS, [GeV]	200
Minimum p_T in matrix element	PTMIN, [GeV]	3
Maximum p_T in matrix element	PTMAX, [GeV]	-1
The switch of keeping recoils	KEEPRECOLIS	TF
The rapidity range	ETAMAX	2.5

Table : Parameters of JEWEL vacuum simulation for central and peripheral "recoils on/off" collisions [6].

[6] K. C. Zapp, JEWEL 2.0.0: Directions for use. Eur. Phys. J., C74(2):2762, 2014 👝 🖌 👘 🗸 🚍 👘 🚊 🔷 🔍 🖓

12 / 29

Name of parameter	Name in JEWEL	Value	
The initial (mean) temperature	TI, [GeV]	0.28	
The initial time $ au_i$ TAUI, [fm]		0.6	
An integer mass number of colliding nuclei	A	197	
The lower end of centrality range	CENTRMIN, [%]	0	60
The upper end of centrality range	CENTRMAX, [%]	10	80
The nucleus-nucleus cross-section	SIGMANN, [fm ²]	4.2	

 $\label{eq:Table: Parameters of JEWEL simulation with medium for central and peripheral "recoils on/off" collisions [6].$

[6] K. C. Zapp, JEWEL 2.0.0: Directions for use. Eur. Phys. J., C74(2):2762, 2014 👝 Kappa Kappa

Angularity for Au+Au central collisions at $\sqrt{s_{\rm NN}}=200~{\rm GeV}$

Angularity for Au+Au central collisions at $\sqrt{s_{\rm NN}} = 200 \ {\rm GeV}$

2D Statistics

Central recoils on Au+Au collisions simulated for medium model at $\sqrt{s_{\rm NN}} = 200$ GeV

Bc. V. Agafonova (CTU in Prague)

Study of jet shapes in JEWEL at RHIC

January, 17, 2019 16 / 29

Statistics

Central Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The momentum dispersion for central Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$

-

The momentum dispersion for central Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$

-

LeSub for central Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

LeSub for central Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

Summary

- The practical application of the anti-kT jet finding algorithm and the chosen jet shape observables on the simulated data with/without nuclear medium model at particle level in the MC generator JEWEL at $\sqrt{s_{\rm NN}} = 200$ GeV.
- Discussion of the obtained results for jet shapes as a function of the transverse momentum of jet and the centrality in vacuum and nuclear medium.

Future goals:

- To perform the background subtraction similarly to the ALICE experiment.
- To apply methods on experimental data from STAR.
- To compare the obtained results with the simulation made in JEWEL and the results from the LHC collaborations.

Backup

Bc. V. Agafonova (CTU in Prague) Study of jet shapes in JEWEL at RHIC January, 17, 2019

3

(B) (A) (B)

A B > A
 A
 B > A
 A

23 / 29

Angularity for Au+Au peripheral collisions at $\sqrt{s_{\rm NN}}=200~{ m GeV}$

Angularity for Au+Au peripheral collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Momentum dispersion for Au+Au peripheral collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

.⊒ . ►

Momentum dispersion for Au+A peripheral collisions at $\sqrt{s_{NN}}$ = 200 GeV

< E

.⊒ . ►

A .

LeSub for Au+Au peripheral collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

LeSub for Au+Au peripheral collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

