Miniworkshop on Diffraction and Ultraperipheral Collisions

Děčín 2019
J. Čepila
September 26, 2019

Contents

1 The deep inelastic scattering 2
2 The wave function 3
2.1 Longitudinal polarization . 4
2.2 Transversal polarization . 5
$\begin{array}{ll}3 \text { Alternative definition } & 7\end{array}$

1 The deep inelastic scattering

Figure 1: Interaction scheme of the deep inelastic scattering

The main ingredient of the total cross section of the scattering of an electron on a proton with large transfer of the four-momenta Q^{2} is the structure function of a proton $F_{2}\left(x, Q^{2}\right)$, where x is the Bjorken- x

$$
\begin{equation*}
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left(\sigma_{T}^{\gamma^{*} p}\left(x, Q^{2}\right)+\sigma_{L}^{\gamma^{*} p}\left(x, Q^{2}\right)\right), \tag{1}
\end{equation*}
$$

where $\alpha_{e m}$ is the structure constant, $\sigma_{T, L}^{\gamma^{*} p}\left(x, Q^{2}\right)$ are transversal and longitudinal cross sections of the scattering of transversally and longitudinally polarized virtual photon with target proton. They can be calculated in the light-cone color dipole model in a frame, where proton is at rest, as

$$
\begin{equation*}
\sigma_{T, L}^{\gamma^{*} p}\left(x, Q^{2}\right)=\int \mathrm{d} \vec{r} \int_{0}^{1} \mathrm{~d} z\left|\psi_{\gamma^{*} \rightarrow q \bar{q}}^{T, L}\left(\vec{r}, z, Q^{2}\right)\right|^{2} \sigma_{q \bar{q}}(\vec{r}, x), \tag{2}
\end{equation*}
$$

where $\sigma_{q \bar{q}}(\vec{r}, x)$ is a cross section of the strong interaction of a quark-antiquark dipole with the target proton, $\psi_{\gamma^{*} \rightarrow q \bar{q}}^{T, L}\left(\vec{r}, z, Q^{2}\right)$ is a wave function (probability amplitude) of a situation where you split photon into a quark-antiquark pair (or better probability amplitude that the $q \bar{q}$ Fock state of the infinite Fock decomposition of a photon joins the interaction), \vec{r} is the transverse dipole size, \vec{b} is the impact parameter of the dipole(transverse distance from the center of the proton to the center of mass of the dipole) and z is a part of photon momenta carried by one of the quarks from the dipole, Q is the scale of the incoming photon and Bjorken- x of the scattering is

$$
\begin{equation*}
x=\frac{Q^{2}}{W^{2}+Q^{2}}, \tag{3}
\end{equation*}
$$

where W is the total energy of the $\gamma-p$ system. The dipole cross section is model dependent and cannot be derived from the first principles. However, the wave function can be derived from QED as a vertex $\gamma \rightarrow q \bar{q}$ in a light-cone frame. The square of the wave function is

$$
\begin{align*}
\left|\psi_{\gamma^{*} \rightarrow q \bar{q}}^{T}\left(\vec{r}, z, Q^{2}\right)\right|^{2} & =\frac{2 N_{c} \alpha_{e m}}{(2 \pi)^{2}} \sum_{f} Z_{f}^{2}\left(\left(z^{2}+(1-z)^{2}\right) \varepsilon^{2} K_{1}^{2}(\varepsilon r)+m_{f}^{2} K_{0}^{2}(\varepsilon r)\right) \\
\left|\psi_{\gamma^{*} \rightarrow q \bar{q}}^{L}\left(\vec{r}, z, Q^{2}\right)\right|^{2} & =\frac{2 N_{c} \alpha_{e m}}{(2 \pi)^{2}} \sum_{f} Z_{f}^{2} 4 Q^{2} z^{2}(1-z)^{2} K_{0}^{2}(\varepsilon r) \tag{4}
\end{align*}
$$

where $\varepsilon^{2}=z(1-z) Q^{2}+m_{f}^{2}, N_{c}$ is a number of colors, Z_{f} is a fractional charge of a flavor f, K_{0} and K_{1} are modified Bessel functions.

2 The wave function

The wave function can be defined in a mixed representation as

$$
\begin{align*}
\psi_{\gamma^{*} \rightarrow q \bar{q}}^{T, L}\left(\vec{r}, z, Q^{2}\right) & =\frac{\sqrt{N_{c} \alpha_{e m}}}{2 \pi} Z_{f} \chi_{j}^{\dagger} \hat{\mathcal{O}}^{T, L} \chi_{i} K_{0}(\varepsilon r) \\
\hat{\mathcal{O}}^{T} & =m_{f}(\vec{\sigma} \cdot \vec{e})+i(1-2 z)(\vec{\sigma} \cdot \vec{n})\left(\vec{e} \cdot \vec{\nabla}_{r}\right)+(\vec{\sigma} \times \vec{e}) \cdot \vec{\nabla}_{r} \\
\hat{\mathcal{O}}^{L} & =2 Q z(1-z)(\vec{\sigma} \cdot \vec{n}) \tag{5}
\end{align*}
$$

where χ_{j} and χ_{i} represent spinors of a quark and antiquark, m_{f} is a mass of a quark with flavor f, $\vec{\sigma}$ is a vector of Pauli matrices, \vec{e} is a polarization vector of incoming photon, \vec{n} is a unit vector in the direction of photon propagation and $\vec{\nabla}_{r}$ is a two-dimensional vector of derivatives w.r.t. r.
Let's assume, that the frame in which we will be working is such that the photon comes in the positive direction of the z axis. Therefore, the vector \vec{n} points in the direction of \vec{e}_{z}. Also, it is obvious that the vector \vec{r} is perpendicular to the z axis.

Figure 2: Scheme of the γ^{*} to $q \bar{q}$ splitting

2.1 Longitudinal polarization

For longitudinally polarized photons the polarization vector goes along the photon propagation and so the system looks like

Figure 3: Coordinate system for longitudinally polarized photon
and the term

$$
\begin{equation*}
\chi_{j}^{\dagger} 2 Q z(1-z)(\vec{\sigma} \cdot \vec{n}) \chi_{i} K_{0}(\varepsilon r)=2 Q z(1-z) \chi_{j}^{\dagger}\left(\vec{\sigma} \cdot \vec{e}_{z}\right) \chi_{i} K_{0}(\varepsilon r) \tag{6}
\end{equation*}
$$

simplifies by using the fact that $\vec{e}_{z}=(0,0,1)$ to

$$
\begin{equation*}
2 Q z(1-z) \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{0}(\varepsilon r) \tag{7}
\end{equation*}
$$

Now, the the square of the wave function means that we have to sum over spinors of quark and antiquark and over possible flavours as

$$
\begin{align*}
\left|\psi_{\gamma^{*} \rightarrow q \bar{q}}^{L}\left(\vec{r}, z, Q^{2}\right)\right|^{2} & =\sum_{i, j, f} \psi_{\gamma^{*} \rightarrow q \bar{q}}^{L *}\left(\vec{r}, z, Q^{2}\right) \psi_{\gamma^{*} \rightarrow q \bar{q}}^{L}\left(\vec{r}, z, Q^{2}\right) \\
& =\sum_{i, j, f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2} 4 Q^{2} z^{2}(1-z)^{2}\left(\chi_{j}^{\dagger} \sigma_{3} \chi_{i}\right)^{*}\left(\chi_{j}^{\dagger} \sigma_{3} \chi_{i}\right) K_{0}^{2}(\varepsilon r) \\
& =\sum_{i, j, f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2} 4 Q^{2} z^{2}(1-z)^{2}\left(\chi_{i}^{*} \sigma_{3}^{*} \chi_{j}^{\dagger *} \chi_{j}^{\dagger} \sigma_{3} \chi_{i}\right) K_{0}^{2}(\varepsilon r) \tag{8}
\end{align*}
$$

Now, we use the fact that the spinors are normalized to one and that the square of any Pauli matrix is unit operator

$$
\begin{equation*}
\sum_{i} \chi_{i}^{*} \chi_{i}=1 \quad \sum_{j} \chi_{j}^{\dagger *} \chi_{j}^{\dagger}=1 \quad \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=1 \tag{9}
\end{equation*}
$$

to get

$$
\begin{align*}
\left|\psi_{\gamma^{*} \rightarrow q \bar{q}}^{L}\left(\vec{r}, z, Q^{2}\right)\right|^{2} & =\sum_{i, j, f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2} 4 Q^{2} z^{2}(1-z)^{2}\left(\chi_{i}^{*} \sigma_{3}^{*} \chi_{j}^{\dagger *} \chi_{j}^{\dagger} \sigma_{3} \chi_{i}\right) K_{0}^{2}(\varepsilon r) \\
& =\sum_{f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2} 4 Q^{2} z^{2}(1-z)^{2} K_{0}^{2}(\varepsilon r) \tag{10}
\end{align*}
$$

2.2 Transversal polarization

For transversally polarized photons the polarization vector goes perpendicular to the photon propagation and so the system looks like

Figure 4: Coordinate system for transversally polarized photon
and the term

$$
\begin{equation*}
\chi_{j}^{\dagger} m_{f}(\vec{\sigma} \cdot \vec{e}) \chi_{i} K_{0}(\varepsilon r)+\chi_{j}^{\dagger} i(1-2 z)(\vec{\sigma} \cdot \vec{n})\left(\vec{e} . \vec{\nabla}_{r}\right) \chi_{i} K_{0}(\varepsilon r)+\chi_{j}^{\dagger}(\vec{\sigma} \times \vec{e}) \vec{\nabla}_{r} \chi_{i} K_{0}(\varepsilon r) \tag{11}
\end{equation*}
$$

separates into three terms

First term

$$
\begin{equation*}
\chi_{j}^{\dagger} m_{f}(\vec{\sigma} \cdot \vec{e}) \chi_{i} K_{0}(\varepsilon r)=\chi_{j}^{\dagger} m_{f} \sigma_{1} \chi_{i} K_{0}(\varepsilon r) \tag{12}
\end{equation*}
$$

Second term

$$
\begin{align*}
\chi_{j}^{\dagger} i(1-2 z)(\vec{\sigma} \cdot \vec{n})\left(\vec{e} \cdot \vec{\nabla}_{r}\right) \chi_{i} K_{0}(\varepsilon r) & =i(1-2 z) \chi_{j}^{\dagger}\left(\vec{\sigma} \cdot \vec{e}_{z}\right)\left(\vec{e}_{x} \cdot \vec{\nabla}_{r}\right) \chi_{i} K_{0}(\varepsilon r) \\
& =i(1-2 z) \chi_{j}^{\dagger} \sigma_{3}\left(\vec{e}_{x} \cdot \vec{\nabla}_{r}\right) \chi_{i} K_{0}(\varepsilon r) \tag{13}
\end{align*}
$$

now we can use the fact that spinors are not dependent on r and K_{0} is a scalar function so we can exchange them and get rid of ∇ using

$$
\begin{equation*}
\vec{\nabla}_{r} K_{0}(\varepsilon r)=(-\varepsilon) \vec{n}_{r} K_{1}(\varepsilon r) \tag{14}
\end{equation*}
$$

to get

$$
\begin{equation*}
-i \varepsilon(1-2 z) \chi_{j}^{\dagger} \sigma_{3}\left(\vec{e}_{x} \cdot \vec{n}_{r}\right) \chi_{i} K_{1}(\varepsilon r)=-i \varepsilon(1-2 z) \chi_{j}^{\dagger} \sigma_{3} \cos \theta \chi_{i} K_{1}(\varepsilon r) \tag{15}
\end{equation*}
$$

Third term

$$
\begin{equation*}
\chi_{j}^{\dagger}(\vec{\sigma} \times \vec{e}) \vec{\nabla}_{r} \chi_{i} K_{0}(\varepsilon r)=-\varepsilon \chi_{j}^{\dagger}\left(\vec{\sigma} \times \vec{e}_{x}\right) \vec{n}_{r} \chi_{i} K_{1}(\varepsilon r) \tag{16}
\end{equation*}
$$

now we use the fact that $\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{c} \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\vec{c} \times \vec{a})$ to rewrite the term

$$
\begin{align*}
-\varepsilon \chi_{j}^{\dagger}\left(\vec{\sigma} \times \vec{e}_{x}\right) \vec{n}_{r} \chi_{i} K_{1}(\varepsilon r) & =-\varepsilon \chi_{j}^{\dagger} \vec{\sigma}\left(\vec{e}_{x} \times \vec{n}_{r}\right) \chi_{i} K_{1}(\varepsilon r) \\
& =-\varepsilon \chi_{j}^{\dagger} \vec{\sigma} \vec{e}_{z} \chi_{i} K_{1}(\varepsilon r) \\
& =-\varepsilon \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}(\varepsilon r) \tag{17}
\end{align*}
$$

Now, the the square of the wave function means that we have to sum over spinors of quark and antiquark and over possible flavours as

$$
\begin{align*}
& \left|\psi_{\gamma^{*} \rightarrow q \bar{q}}^{T}\left(\vec{r}, z, Q^{2}\right)\right|^{2}=\sum_{i, j, f} \psi_{\gamma^{*} \rightarrow q \bar{q}}^{T *}\left(\vec{r}, z, Q^{2}\right) \psi_{\gamma^{*} \rightarrow q \bar{q}}^{T}\left(\vec{r}, z, Q^{2}\right) \\
& =\sum_{i, j, f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2}\left(m_{f} \chi_{j}^{\dagger} \sigma_{1} \chi_{i} K_{0}(\varepsilon r)-\varepsilon \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}(\varepsilon r)-i \varepsilon \cos \theta(1-2 z) \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}(\varepsilon r)\right)^{2} \\
& =\sum_{i, j, f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2}\left[\left(m_{f} \chi_{j}^{\dagger} \sigma_{1} \chi_{i} K_{0}(\varepsilon r)-\varepsilon \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}(\varepsilon r)\right)^{*}\left(m_{f} \chi_{j}^{\dagger} \sigma_{1} \chi_{i} K_{0}(\varepsilon r)-\varepsilon \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}(\varepsilon r)\right)\right. \\
& \left.+\left(\varepsilon \cos \theta(1-2 z) \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}(\varepsilon r)\right)^{*}\left(\varepsilon \cos \theta(1-2 z) \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}(\varepsilon r)\right)\right] \\
& =\sum_{i, j, f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2}\left(m_{f}^{2} \chi_{i}^{*} \sigma_{1}^{*} \chi_{j}^{\dagger *} \chi_{j}^{\dagger} \sigma_{1} \chi_{i} K_{0}^{2}(\varepsilon r)-m_{f} \varepsilon \chi_{i}^{*} \sigma_{1}^{*} \chi_{j}^{\dagger *} \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{0}(\varepsilon r) K_{1}(\varepsilon r)\right. \\
& -m_{f} \varepsilon \chi_{i}^{*} \sigma_{3}^{*} \chi_{j}^{\dagger *} \chi_{j}^{\dagger} \sigma_{1} \chi_{i} K_{0}(\varepsilon r) K_{1}(\varepsilon r)+\varepsilon^{2} \chi_{i}^{*} \sigma_{3}^{*} \chi_{j}^{\dagger *} \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}^{2}(\varepsilon r) \\
& \left.+\varepsilon^{2} \cos ^{2} \theta(1-2 z)^{2} \chi_{i}^{*} \sigma_{3}^{*} \chi_{j}^{\dagger *} \chi_{j}^{\dagger} \sigma_{3} \chi_{i} K_{1}^{2}(\varepsilon r)\right) \tag{18}
\end{align*}
$$

Due to the fact that $\sigma_{3}^{*} \sigma_{1}=-\sigma_{1}^{*} \sigma_{3}$ the second and the third term cancels

$$
\begin{equation*}
\left|\psi_{\gamma^{*} \rightarrow q \bar{q}}^{T}\left(\vec{r}, z, Q^{2}\right)\right|^{2}=\sum_{i, j, f} \frac{N_{c} \alpha_{e m}}{(2 \pi)^{2}} Z_{f}^{2}\left(m_{f}^{2} K_{0}^{2}(\varepsilon r)+\varepsilon^{2} K_{1}^{2}(\varepsilon r)+\varepsilon^{2} \cos ^{2} \theta(1-2 z)^{2} K_{1}^{2}(\varepsilon r)\right) \tag{19}
\end{equation*}
$$

which resembles the correct formula. One note, the angle between \vec{n}_{r} and \vec{e}_{x} is to be specified. However, we have the freedom to choose the orientation of the dipole w.r.t the plane $\vec{e}_{x} \times \vec{e}_{z}$. It is usually chosen to be in the plane so that $\theta=0$.

3 Alternative definition

Instead of formulating the vertex in mixed representation, it is more clear to formulate the vertex in momentum representation (conventional QED) and then use the Fourier transformation

$$
\begin{equation*}
\psi_{h \bar{h}}\left(\vec{r}, z, Q^{2}\right)=\int \frac{\mathrm{d} k}{(2 \pi)^{2}} e^{i \vec{k} \vec{r}} \psi_{h, \bar{h}}\left(\vec{k}, z, Q^{2}\right) \tag{20}
\end{equation*}
$$

where the momentum space light-cone wave function $\psi\left(\neg k, z, Q^{2}\right)$ in the lowest order of QED reads [1, 2]

$$
\begin{equation*}
\psi_{h, h}^{\lambda}\left(\vec{k}, z, Q^{2}\right)=\sqrt{N_{c} \alpha_{e m}} \frac{\bar{u}_{h}(\vec{k})}{\sqrt{z}}\left(Z_{f} \gamma \varepsilon^{\lambda}\right) \frac{v_{h}(-\vec{k})}{\sqrt{1-z}} \Phi(k, z), \tag{21}
\end{equation*}
$$

where the scalar part of the photon light-cone wave function $\Phi(k, z)$ is given by

$$
\begin{equation*}
\Phi(k, z)=\frac{z(1-z)}{z(1-z) Q^{2}+k^{2}+m_{f}^{2}} \tag{22}
\end{equation*}
$$

Performing the Fourier transformation leads to

$$
\begin{align*}
\Psi_{h \bar{h} \lambda=0}^{\gamma^{*}}(r, z, Q) & =e_{f} \delta_{f \bar{f}} e \sqrt{N_{c}} \delta_{h,-\bar{h}} 2 Q z(1-z) \frac{K_{0}(\epsilon r)}{2 \pi} \tag{23}\\
\Psi_{h \bar{h} \lambda= \pm 1}^{\gamma^{*}}(r, z, Q) & = \pm e_{f} \delta_{f \bar{f}} e \sqrt{2 N_{c}}\left(i e^{ \pm i \theta_{r}}\left(z \delta_{h, \pm 1} \delta_{\bar{h}, \mp 1}-(1-z) \delta_{h, \mp 1} \delta_{\bar{h}, \pm 1}\right) \partial_{r}+m_{f} \delta_{h, \pm 1} \delta_{\bar{h}, \pm 1}\right) \frac{K_{0}(\epsilon r)}{2 \pi}
\end{align*}
$$

where $e=\sqrt{4 \pi \alpha_{e m}}, h, \theta_{r}$ is the azimuthal angle between the vector \vec{r} and the x-axis in the transverse plane, $\epsilon^{2}=z(1-z) Q^{2}+m_{f}^{2}, N_{c}=3$ is the number of colors, $e_{f} \delta_{f \bar{f}}$ and m_{f} are the fractional charge and effective mass of the quark respectively. The partial derivative of the modified Bessel function K_{0} with respect to r can be done using the equation $\partial_{r} K_{0}(\epsilon r)=-\epsilon K_{1}(\epsilon r)$.

References

[1] H. G. Dosch, T. Gousset, G. Kulzinger, and H. Pirner, Phys.Rev. D55, 2602 (1997), arXiv:hepph/9608203.
[2] G. P. Lepage and S. J. Brodsky, Phys.Rev. D22, 2157 (1980).

