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1 The deep inelastic scattering

Figure 1: Interaction scheme of the deep inelastic scattering

The main ingredient of the total cross section of the scattering of an electron on a proton with
large transfer of the four-momenta Q2 is the structure function of a proton F2(x,Q

2), where x is the
Bjorken-x

F2(x,Q
2) =

Q2

4π2αem

(σγ∗p
T (x,Q2) + σ

γ∗p
L (x,Q2)), (1)

where αem is the structure constant, σγ∗p
T,L(x,Q

2) are transversal and longitudinal cross sections of the
scattering of transversally and longitudinally polarized virtual photon with target proton. They can
be calculated in the light-cone color dipole model in a frame, where proton is at rest, as

σ
γ∗p
T,L(x,Q

2) =

∫

d~r

1
∫

0

dz|ψT,L
γ∗→qq̄(~r, z, Q

2)|2σqq̄(~r, x), (2)

where σqq̄(~r, x) is a cross section of the strong interaction of a quark-antiquark dipole with the target

proton, ψT,L
γ∗→qq̄(~r, z, Q

2) is a wave function (probability amplitude) of a situation where you split
photon into a quark-antiquark pair (or better probability amplitude that the qq̄ Fock state of the

infinite Fock decomposition of a photon joins the interaction), ~r is the transverse dipole size, ~b is the
impact parameter of the dipole(transverse distance from the center of the proton to the center of
mass of the dipole) and z is a part of photon momenta carried by one of the quarks from the dipole,
Q is the scale of the incoming photon and Bjorken-x of the scattering is

x =
Q2

W 2 +Q2
, (3)
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where W is the total energy of the γ − p system. The dipole cross section is model dependent and
cannot be derived from the first principles. However, the wave function can be derived from QED as
a vertex γ → qq̄ in a light-cone frame. The square of the wave function is

|ψT
γ∗→qq̄(~r, z, Q

2)|2 =
2Ncαem

(2π)2

∑

f

Z2

f

(

(z2 + (1− z)2)ε2K2

1
(εr) +m2

fK
2

0
(εr)

)

|ψL
γ∗→qq̄(~r, z, Q

2)|2 =
2Ncαem

(2π)2

∑

f

Z2

f4Q
2z2(1− z)2K2

0
(εr), (4)

where ε2 = z(1− z)Q2 +m2

f , Nc is a number of colors, Zf is a fractional charge of a flavor f , K0 and
K1 are modified Bessel functions.

2 The wave function

The wave function can be defined in a mixed representation as

ψ
T,L
γ∗→qq̄(~r, z, Q

2) =

√
Ncαem

2π
Zfχ

†
jÔT,LχiK0(εr)

ÔT = mf (~σ.~e) + i(1− 2z)(~σ.~n)(~e.~∇r) + (~σ × ~e).~∇r

ÔL = 2Qz(1 − z)(~σ.~n) (5)

where χj and χi represent spinors of a quark and antiquark, mf is a mass of a quark with flavor f ,
~σ is a vector of Pauli matrices, ~e is a polarization vector of incoming photon, ~n is a unit vector in
the direction of photon propagation and ~∇r is a two-dimensional vector of derivatives w.r.t. r.
Let’s assume, that the frame in which we will be working is such that the photon comes in the
positive direction of the z axis. Therefore, the vector ~n points in the direction of ~ez. Also, it is
obvious that the vector ~r is perpendicular to the z axis.

q

q̄

γ∗

χj

χi

~n = ~ez

Figure 2: Scheme of the γ∗ to qq̄ splitting
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2.1 Longitudinal polarization

For longitudinally polarized photons the polarization vector goes along the photon propagation and
so the system looks like

~n = ~e = ~ez

~r

Figure 3: Coordinate system for longitudinally polarized photon

and the term
χ
†
j2Qz(1− z)(~σ.~n)χiK0(εr) = 2Qz(1 − z)χ†

j(~σ.~ez)χiK0(εr) (6)

simplifies by using the fact that ~ez = (0, 0, 1) to

2Qz(1 − z)χ†
jσ3χiK0(εr). (7)

Now, the the square of the wave function means that we have to sum over spinors of quark and
antiquark and over possible flavours as

|ψL
γ∗→qq̄(~r, z, Q

2)|2 =
∑

i,j,f

ψL∗
γ∗→qq̄(~r, z, Q

2)ψL
γ∗→qq̄(~r, z, Q

2)

=
∑

i,j,f

Ncαem

(2π)2
Z2

f4Q
2z2(1− z)2(χ†

jσ3χi)
∗(χ†

jσ3χi)K
2

0
(εr)

=
∑

i,j,f

Ncαem

(2π)2
Z2

f4Q
2z2(1− z)2(χ∗

iσ
∗
3
χ
†∗
j χ

†
jσ3χi)K

2

0
(εr) (8)

Now, we use the fact that the spinors are normalized to one and that the square of any Pauli matrix
is unit operator

∑

i

χ∗
iχi = 1

∑

j

χ
†∗
j χ

†
j = 1 σ2

1
= σ2

2
= σ2

3
= 1 (9)

to get

|ψL
γ∗→qq̄(~r, z, Q

2)|2 =
∑

i,j,f

Ncαem

(2π)2
Z2

f4Q
2z2(1− z)2(χ∗

iσ
∗
3
χ
†∗
j χ

†
jσ3χi)K

2

0
(εr)

=
∑

f

Ncαem

(2π)2
Z2

f4Q
2z2(1− z)2K2

0
(εr) (10)
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2.2 Transversal polarization

For transversally polarized photons the polarization vector goes perpendicular to the photon propa-
gation and so the system looks like

~r

~e = ~ex

~n = ~ez

θ

Figure 4: Coordinate system for transversally polarized photon

and the term

χ
†
jmf (~σ.~e)χiK0(εr) + χ

†
ji(1 − 2z)(~σ.~n)(~e.~∇r)χiK0(εr) + χ

†
j(~σ × ~e)~∇rχiK0(εr) (11)

separates into three terms

First term

χ
†
jmf(~σ.~e)χiK0(εr) = χ

†
jmfσ1χiK0(εr) (12)

Second term

χ
†
ji(1− 2z)(~σ.~n)(~e.~∇r)χiK0(εr) = i(1 − 2z)χ†

j(~σ.~ez)(~ex.
~∇r)χiK0(εr)

= i(1 − 2z)χ†
jσ3(~ex.

~∇r)χiK0(εr) (13)

now we can use the fact that spinors are not dependent on r and K0 is a scalar function so we can
exchange them and get rid of ∇ using

~∇rK0(εr) = (−ε)~nrK1(εr) (14)

to get

−iε(1 − 2z)χ†
jσ3(~ex.~nr)χiK1(εr) = −iε(1 − 2z)χ†

jσ3cosθχiK1(εr)

(15)
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Third term

χ
†
j(~σ × ~e)~∇rχiK0(εr) = −εχ†

j(~σ × ~ex)~nrχiK1(εr) (16)

now we use the fact that ~a.(~b× ~c) = ~c.(~a×~b) = ~b.(~c× ~a) to rewrite the term

−εχ†
j(~σ × ~ex)~nrχiK1(εr) = −εχ†

j~σ(~ex × ~nr)χiK1(εr)

= −εχ†
j~σ~ezχiK1(εr)

= −εχ†
jσ3χiK1(εr) (17)

Now, the the square of the wave function means that we have to sum over spinors of quark and
antiquark and over possible flavours as

|ψT
γ∗→qq̄(~r, z, Q

2)|2 =
∑

i,j,f

ψT∗
γ∗→qq̄(~r, z, Q

2)ψT
γ∗→qq̄(~r, z, Q

2)

=
∑

i,j,f

Ncαem

(2π)2
Z2

f (mfχ
†
jσ1χiK0(εr)− εχ

†
jσ3χiK1(εr)− iε cos θ(1− 2z)χ†

jσ3χiK1(εr))
2

=
∑

i,j,f

Ncαem

(2π)2
Z2

f [(mfχ
†
jσ1χiK0(εr)− εχ

†
jσ3χiK1(εr))

∗(mfχ
†
jσ1χiK0(εr)− εχ

†
jσ3χiK1(εr))

+(ε cos θ(1− 2z)χ†
jσ3χiK1(εr))

∗(ε cos θ(1− 2z)χ†
jσ3χiK1(εr))]

=
∑

i,j,f

Ncαem

(2π)2
Z2

f (m
2

fχ
∗
iσ

∗
1
χ
†∗
j χ

†
jσ1χiK

2

0
(εr)−mfεχ

∗
iσ

∗
1
χ
†∗
j χ

†
jσ3χiK0(εr)K1(εr)

−mfεχ
∗
iσ

∗
3
χ
†∗
j χ

†
jσ1χiK0(εr)K1(εr) + ε2χ∗

iσ
∗
3
χ
†∗
j χ

†
jσ3χiK

2

1
(εr)

+ε2 cos2 θ(1− 2z)2χ∗
iσ

∗
3
χ
†∗
j χ

†
jσ3χiK

2

1
(εr)) (18)

Due to the fact that σ∗
3
σ1 = −σ∗

1
σ3 the second and the third term cancels

|ψT
γ∗→qq̄(~r, z, Q

2)|2 =
∑

i,j,f

Ncαem

(2π)2
Z2

f

(

m2

fK
2

0
(εr) + ε2K2

1
(εr) + ε2 cos2 θ(1− 2z)2K2

1
(εr)

)

(19)

which resembles the correct formula. One note, the angle between ~nr and ~ex is to be specified.
However, we have the freedom to choose the orientation of the dipole w.r.t the plane ~ex × ~ez. It is
usually chosen to be in the plane so that θ = 0.
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3 Alternative definition

Instead of formulating the vertex in mixed representation, it is more clear to formulate the vertex in
momentum representation (conventional QED) and then use the Fourier transformation

ψhh̄(~r, z, Q
2) =

∫

dk

(2π)2
ei
~k~rψh,h̄(~k, z, Q

2), (20)

where the momentum space light-cone wave function ψ(~,k, z, Q2) in the lowest order of QED reads
[1, 2]

ψλ
h,h̄(

~k, z, Q2) =
√

Ncαem

ūh(~k)√
z

(Zfγε
λ)
vh(−~k)√
1− z

Φ(k, z), (21)

where the scalar part of the photon light-cone wave function Φ(k, z) is given by

Φ(k, z) =
z(1 − z)

z(1− z)Q2 + k2 +m2

f

(22)

Performing the Fourier transformation leads to

Ψγ∗

hh̄λ=0
(r, z, Q) = efδff̄e

√

Ncδh,−h̄2Qz(1 − z)
K0(ǫr)

2π
(23)

Ψγ∗

hh̄λ=±1
(r, z, Q) = ±efδff̄e

√

2Nc

(

ie±iθr
(

zδh,±1δh̄,∓1 − (1− z)δh,∓1δh̄,±1

)

∂r +mfδh,±1δh̄,±1

) K0(ǫr)

2π
,

where e =
√
4παem, h, θr is the azimuthal angle between the vector ~r and the x-axis in the transverse

plane, ǫ2 = z(1− z)Q2 +m2

f , Nc = 3 is the number of colors, efδff̄ and mf are the fractional charge
and effective mass of the quark respectively. The partial derivative of the modified Bessel function
K0 with respect to r can be done using the equation ∂rK0(ǫr) = −ǫK1(ǫr).
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