FDD o2 software

Michal Broz

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

- Hits
- Digitizer
- Reconstruction

FDD O2 status - Geometry

Final active volume: scintillator blocks and wave-length shifting • bars implemented in geometry

> 10 15 20 25

5

Mechanical support to be ported/adjusted from AD

3

FDD O2 status - Hits

- FDD store one hit per charged track crossing the scintillator
- For every hit we integrate number of photons created at each step using energy deposition and light output of the scintillator (photons/eV)
- Figures shown here were done using box generator in detector acceptance and FDD geometry only

- Two main parts:
 - Generation of the signal pulse
 - Processing of the signal pulse
- Signal pulse: Output of the PMT in bins with the width determined by FEE time resolution (one TVector<float> per channel)
- Digitizer simulates the route Photons->Photo-Electrons->PMT amplification-> Signal pulse
 - Intrinsic time resolution of the scintillator
 - Light loses during transport to photo-catode
 - Time spread due to light collection and transport
 - Quantum efficiency of the photo-catode
 - Time spread due to PMT transit time (per photo-electron)
 - PMT gain (real-life calibration curves in the future)
 - Gain variation due to variation of number of photo-electrons emitted from the first dynode

Digitization

- In FDD we use scintillator • BC-420
 - Light output 64% of anthracene = 12.8e6/GeV
 - Wavelength of max emission 391 nm

Physical Properties of Organic Scintillators

178

1.25

0.714

216

445

1.62

20.000 30

No

2 10⁶

Properties

Molecular weight

Density, g/cm³

Melting point, °C

Refractive index

Decay time, ns

Hygroscopy

Luminescence max., nm

Light output, Photon/MeV

Radiation stability, rad

H/C ratio

- Coupled to NOL38 wavelength shifter
 - Absorption 382 nm
 - Luminescence 431nm 458nm

BC-418	BC-420
67	64
0.5	0.5
1.4	1.5
1.2	1.3
391	391
	BC-418 67 0.5 1.4 1.2 391

Digitization

- Light yield: Fraction of photons created in scintillator which will arrive on the pmt window
 - Unknown, ~1% (as seen in the old VZERO)
- Quantum efficiency: The ratio of the number of photoelectrons emitted by the photo-cathode to the number of photons incident on the window
 - ~18% for NOL 38 output wavelengths

WAVELENGTH (nm)

Cathode Characteristics					Ano	de Chara	cteristi	cs 🕅				(at 25 °C)
Lumi- nous Typ. (µA/Im)	Blue Sensitivity Index (CS 5-58) Typ.	Radiant	Badiant		Gain Dark Currer (After 30 mi		Current 30 min.)	Time Response			۵	
		(CS 5-58) Typ.	Typ. (mA/W)	Typ. Typ. nA/W) (A/Im)	at 0 T Typ.	at 0.5 T Typ.	at 1.0 T Typ.	Typ. (nA)	Max. (nA)	Rise Time Typ. (ns)	Transit Time Typ. (ns)	Notes
80	9.5	76	40	$5.0 imes10^5$	2.3×10^{5}	$1.8 imes10^4$	5	30	1.5	5.6	(For +HV operation) Assembly type: H6152-70 Recommended	R5505-70
80	9.5	76	800	$1.0 imes10^7$	$3.0 imes10^6$	$1.5 imes10^5$	15	100	2.1	7.5	(For +HV operation) Assembly type: H8409-70 Recommended	R7761-70
70	9.0	72	700	$1.0 imes10^7$	4.1×10^{6}	$2.0 imes10^5$	30	200	2.5	9.5	(For +HV operation) Assembly type: H6614-70 Recommended	R5924-70

Digitization

- Generation of the signal pulse:
 - Total charge per Hit from PMT is computed using number of photo-electrons and PMT gain
 - Total charge is distributed over pulse per photoelectron using time and amplitude response of the PMT
 - For every photo-electron:
 - The mean ph.e. time should be further spread according to signal shape: function simulates the time of arrival of the photons at the photocathode (not do yet)
 - Gain variation is modeled using photo-electron spectrum
 - Photo-electron spectrum is parameterized by:
 - Number of secondary electrons emitted from first dynode (per ph.e.)
 - Transparency of the first dynode of the PM
 - Time distribution of the signal per photo-electron is parameterized by PMT transit time

- Hit contains: •
 - Base hit info + Number of photons
- Digit contains: •
 - Channel data structure with ADC charge, Time and various bits (bool) as sent by FEE
 - IR, Event time

12

PMT transit time

- Comparison to test bench data
- Test bench consist of one complete channel looking at cosmic muons
- The PMT output seen on the oscilloscope is something we would like to reproduce in digitizer
- System is still "work in progress", the pulse shape is not final

- Comparison to test bench data
- Test bench consist of one complete channel looking at cosmic muons
- The PMT output seen on the oscilloscope is something we would like to reproduce in digitizer
- The main shape of the pulse can be described by Crystal ball function
 - Due to time spread during light collection and transport
- Digitizer working with single 1-2GeV muons can reproduce the data
- Digitization parameters will be fine tuned to data once the final pulse etc. will be available

FDD O2 status -Reconstruction

- Reconstruction from Digits implemented
 - Copy the channel data structure from Digits as it is
 - Compute the mean time per side (charge weighted average)

11

Summary and outlook

- Done:
 - Geometry of active volume
 - Hits
 - Digitization
 - Reconstruction from Digits
- Next:
 - Geometry of support and other passive parts
 - Raw2Digits, Digits2Raw
 - Calibration object(s)