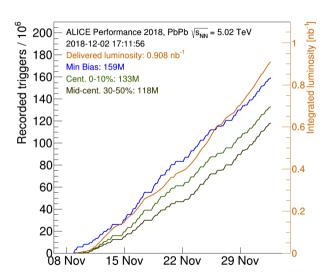


Luminosity calculation tool

Miniworkshop difrakce a UPC 2019

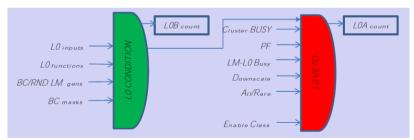

Roman Lavička

Sep 26, 2019, Děčín

Content

- 1 Theory
 - Alice trigger system
 - Luminosity
 - Implementation
- 2 Output
 - Trending Luminosity
 - So what?

Theory



Roman Lavička Děčín 2019 Sep 26, 2019, Děčín 3/22

Trigger system

- triggering detectors
- trigger inputs
- CTP (Central Trigger Processor)
- trigger decisions
 - 4 levels of decisions
 - LM, L0, L1 and L2
 - depend on the speed of propagation of the signal to CTP
- readout detectors

Clusters

- Groups trigger and readout detectors.
- Max 6 per run.

Classes

6/22

- Groups several trigger info (including trigger inputs).
- Max 100 per run.

Trigger Classes								Counters							
ID	Name	BC Mask	Down Scaling	Cluster	Group	Time (s)	Duration	LMb	LMa	LOb	L0a	L1b	L1a	L2b	L2a
Θ	CTRUE-B-NOPF-CENTNOTRD	В	0.000%	1	θ	Θ	06:33:15	586 579 644	586 579 644	391 052 883	46 505	46 505	46 505	46 505	46 505
1	CTRUE - A - NOPF - CENTNOTRD	Α	0.000%	1	θ	0	06:33:15	90 304 134 8	90 304 134 8	60 202 709 2	11 867	11 867	11 867	11 867	11 867
2	CTRUE - C - NOPF - CENTNOTRD	С	0.000%	1	Θ	0	06:33:15	90 304 134 9	90 304 134 9	60 202 846 4	12 067	12 067	12 067	12 067	12 067
3	CTRUE - E - NOPF - CENTNOTRD	Е	0.015%	1	θ	Θ	06:33:15	529 643 020	529 643 020	529 643 020	11 813	11 813	11 813	11 813	11 813
4	CTRUE-T-NOPF-CENTNOTRD	Т	0.000%	1	θ	0	06:33:15	222 450 068	222 450 068	222 450 068	0	0	0	0	0
5	CTRUE-B-SPD1-CENTNOTRD	В	0.000%	1	θ	0	06:33:15	586 579 644	586 579 644	391 052 883	41 981	41 981	41 981	41 981	41 981
6	CCUP13-B-SPD1-CENTNOTRD	В	0.500%	1	Θ	Θ	06:33:15	586 579 644	586 579 644	27 339 595 9	49 995	49 995	49 995	49 995	49 995
7	CCUP25-B-SPD1-CENTNOTRD	В		1	θ	0	06:33:15	586 579 644	586 579 644	2 608 046 30	714 872	714 872	714 872	714 872	714 872
8	CCUP25 - A - NOPF - CENTNOTRD	Α	0.000%	1	Θ	0	06:33:15	90 304 134 8	90 304 134 8	25 075 739	0	0	0	0	0
9	CCUP25-C-NOPF-CENTNOTRD	С	0.000%	1	θ	Θ	06:33:15	90 304 134 9	90 304 134 9	82 324 579	0	0	0	Θ	0
10	CCUP25-E-NOPF-CENTNOTRD	E	0.000%	1	θ	0	06:33:15	529 643 020	529 643 020	1 755	0	0	0	0	0
11	CCUP25-U-SPD1-CENTNOTRD	U		1	θ	Θ	06:33:15	293 157 411	293 157 411	1 471 498 44	366 028	366 028	366 028	366 028	366 028

Class naming

7 / 22

Class naming - identification

- Some shortcut, which can give a hint about the purpose of this class.
- Usually starts with C means class...
- Here, CUP is an abbreviation for Central Ultra-Peripheral.
- Number at the end specifies it (timeline ordered).
 - $lue{}$ (i.e. 8 is designed for trigger on J/ψ in central barrel firstly used in 2015 PbPb...)
- Other UPC important class MUP = Muon Ultra-Peripheral.

Class naming - mask

9/22

- Tells about type of beam crossing.
- B-mask stands for Beam-Beam collision.
- i.e. A-mask is a Beam-Gas collision with beam from A-direction.
- Others: C, E, T, U...

Class naming - protection

- Tells about protection on other bunch crossings.
- NOPF no past/future protection.
- Example from 2018 PbPb SPD2:
 - Protection of SPD on 6 previous bunch crossing.
 - Due to high collision rate.

Class naming - cluster

- Tells about the cluster of detectors used.
- CENT means central barrel.
- Others: ALL, FAST, MUON...
- Usually with addition NOTRD, meaning TRD is NOT necessary.
 - (TRD quite often crashed and excluding it from trigger matrix helped to improve data taking)

Class example

- CCUP8 = !0VBA & !0VBC & !0UBA & !0UBC & 0STP & 0OMU
 - !0VBX veto on V0 detector (A or C side)
 - !0UBX veto on AD detector (A or C side)
 - 0STP back-to-back event according to SPD topology
 - 0OMU back-to-back event according to TOF topology

UPC trigger class definitions at UPC Twiki.

Luminosity

■ In theory:

$$L = \frac{R}{\sigma} \tag{1}$$

■ In the ALICE (real) world:

$$L_{Class} = L_{Seen} \cdot LT_{Class} \tag{2}$$

 Roman Lavička
 Děčín 2019
 Sep 26, 2019, Děčín
 13/22

Reference class

$$L_{Class} = L_{Seen} \cdot LT_{Class} \tag{3}$$

$$L_{Seen} = \frac{L_{REF}^{B}}{\sigma_{REF}} F(\mu_{REF}) \tag{4}$$

- You do not know the cross section (CS) of (most of) your class.
- You compare trigger counts (B)efore veto of your class to trigger counts (B)efore veto of some class with known CS (i.e. C0TVX in pp system).
- You known this CS (firstly) from MC estimates and later from Van der Meer scan.
- You also have to apply a correction on pileup $F(\mu_{REF})$.
- NOTE 1: Trending.root files are set to μb^{-1}
- NOTE 2: You should also correct on background not implemented in trending.root.

←□ → ←□ → ←□ → ←□ → へ○

Pile-up correction

$$L_{Seen} = \frac{L_{REF}^{B}}{\sigma_{RFF}} F(\mu_{REF})$$
 (5)

$$L_{Seen} = \frac{L_{REF}^{B}}{\sigma_{REF}} F(\mu_{REF})$$

$$F(\mu_{REF}) = \frac{\mu_{REF}}{1 - exp(-\mu_{REF})}$$
(5)

$$\mu_{REF} = -\log\left(1 - \frac{L_{REF}^{B}}{\text{total bunch crossings}}\right) \tag{7}$$

- \blacksquare μ_{RFF} is an average number of collisions per bunch crossing.
- From the Poisson distribution.
- Number of triggers in a bunch crossing (hits in T0A or T0C).

$$P(AC > 0) = 1 - P(0) = 1 - e^{-\mu}$$
 (8)

Class lifetime (LT)

$$L_{Class} = L_{Seen} \cdot LT_{Class} \tag{9}$$

$$LT_{Class} = \frac{L_{Class}^{A}}{L_{Class}^{B}} \tag{10}$$

- Ratio of triggers (A)fter the CTP veto and (B)efore.
- Not precise for all classes!!!
- i.e. in UPC triggers L_{Class}^{B} suffers from afterpulse and late-activity effects.
- In theory, all triggers from the same cluster should have the same LT.
- Therefore, you look for a non-affected class from the same cluster and use its LT instead.

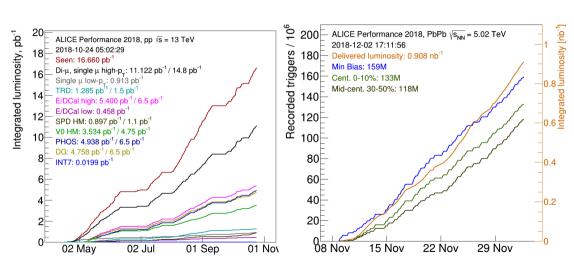
Roman Lavička Děčín 2019 Sep 26, 2019, Děčín 16/22

Downscaling factor (DS)

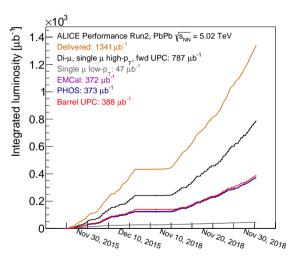
- Sometimes, classes are downscaled (due to i.e. high trigger rate...).
- Does not play a role, when your class LT is correct.
- When you use a LT of other class, you have to take into account possible different DS.

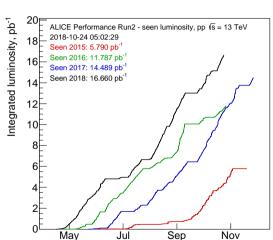
$$LT_{Class} = LT_{Cluster} \frac{DS(Class)}{DS(Cluster)}$$
(11)

Roman Lavička Děčín 2019 Sep 26, 2019, Děčín 17 / 22


Output

Roman Lavička Děčín 2019 Sep 26, 2019, Děčín 18/22


Some nice figures I



Some nice figures II

How I can take advantage of this? I

- Everything taken from OCDB files stored at alice-ocdb.cern.ch
- For codes, go to AliPhysics/PWGPP/EVS/ on GitHub.
- Validated luminosity figures are in ALICE figure repository.
- All trending.root files, which contain calculated luminosity for every trigger class in every run, are in aliqaevseos.web.cern.ch/aliqaevseos/data/
- This was periodically updated during data takings and you could see, how we are doing.
- You can find some custom macros and many figures there as well.

How I can take advantage of this? I

- If you want to easily calculated lumi for your analysis, do this steps:
 - Download the trending.root
 - The luminosity of your analysed sample is usually smaller than the maximum available (Error during reconstruction, offline cuts...), so you can not simply take the luminosity from the file.
 - Get N seen events of your trigger from the tree, you want to analyse.
 - Get I2a info from trending.root file and get N events of your trigger.
 - Make ratio of these for each run you want to analyse.
 - Take luminosity of your trigger for each run.
 - Scale it with the ratio.
 - Add any other corrections you think are necessary.
 - In case of troubles, you can try to ask me.

Roman Lavička Děčín 2019 Sep 26, 2019, Děčín 22 / 22

BACK UP

 Roman Lavička
 Děčín 2019
 Sep 26, 2019, Děčín
 23 / 22