A generator of forward neutrons for ultra-peripheral collisions: $n_{O}^{O}n$

Michal Broz^{*}, Guillermo Contreras^{*}, Daniel Tapia Takaki[#]

* Czech Technical University in Prague# University of Kansas

- Motivation
- Formalism
- Implementation
- Few results

arXiv:1908.08263

Michal Broz - 24.9.2019 - Physics and detector requirements at zero-degree of colliders

Motivation

UPC and nuclear break-up

- Relativistic heavy ions are accompanied by high photon fluxes due to their large electric charge and the strongly Lorentz contracted electric fields.
- At impact parameters large enough so that no hadronic interactions occur, the photonuclear interactions can be seen: these are Ultra-Peripheral Collisions (UPCs)
- Because of the high photon flux, the UPC events have a high probability to be accompanied by additional photon exchanges that excite one or both of the ions

a)

UPC and nuclear break-up

- Experimentally, requiring mutual Coulomb excitation along with VM production may lead to a trigger with a higher purity, allowing more events to be collected than for the VM state by itself
- Neutron-differential studies are considered as a promising tool to decouple low-x and high-x contributions in vector meson photo-production
- STAR and CMS used requirement on forward neutrons in their UPC triggers
- ALICE measured event fractions of various break-up scenarios

Michal Broz - 24.9.2019 - Physics and detector requirements at zero-degree of colliders

Formalism

Photo-production with nuclear break-up

• Assuming that the sub-reactions are independent, the cross section to produce a vector meson (or probability of any other photoproduction process) accompanied by a dissociation is

$$\sigma(AA \to PA'_iA'_j) \propto \int d^2b P_P(b) P_{ij}(b) \exp(-P_H(b))$$

- There are 3 independent probabilities in the formula
 - The probability of the hard photoproduction process $P_P(b)$
 - ^D The probability of nuclear break-up with emission of i and j neutrons from the first and second nucleus, respectively $P_{ij}(b)$
 - We expect the break-up probabilities to be independent $P_{ij}(b) = P_i(b) \times P_j(b)$
 - The probability of a hadronic interaction $P_H(b)$

Photo-production cross section

- A photon from the field of one nucleus fluctuates to a quark-antiquark pair and scatters elastically from the other nucleus, emerging as a vector meson.
- The cross section is sensitive to the vector meson-nucleon interaction cross section
- The photon energy k is related to the final state object rapidity:

$$k = \frac{1}{2}M_V \exp(\pm y)$$

a)

Photo-production cross section

• The probability for photo-production of vector meson or any other object:

$$P_P(b) = \int dk \frac{d^3 n(b,k)}{dk d^2 \vec{b}} \sigma_{\gamma A \to PA}(k)$$

• The photon flux from a relativistic heavy nucleus is given by the Weizsaecker-Williams approach:

$$\frac{d^3n(b,k)}{dkd^2\vec{b}} = \frac{\mathbf{Z}^2\alpha}{\pi^2\gamma^2}k\left[K_1^2(\frac{kb}{\gamma}) + \frac{1}{\gamma^2}K_0^2(\frac{kb}{\gamma})\right]$$

• If we combine the formulas we get: $\sigma(AA \to PA'_iA'_j) \propto \int d^2\vec{b} \int dk \frac{d^3n(b,k)}{dkd^2\vec{b}} \sigma_{\gamma A \to PA}(k) P_{ij}(b) \exp(-P_H(b))$

Photo-production with nuclear break-up

• For a single event the photon energy k is fixed and we can get rid of the integral over k:

$$\sigma(AA \to PA'_iA'_j)\big|_{k=\text{const}} \propto \int d^2\vec{b} \frac{d^3n(b,k)}{dkd^2\vec{b}} P_{ij}(b) \exp(-P_H(b))$$

• And we can define a probability of the breakup in the event :

$$P(AA \to A'_i A'_j)\big|_{k=\text{const}} = \frac{\int d^2 \vec{b} \frac{d^3 n(b,k)}{dk d^2 \vec{b}} \exp(-P_H(b)) P_{ij}(b)}{\int d^2 \vec{b} \frac{d^3 n(b,k)}{dk d^2 \vec{b}} \exp(-P_H(b))}$$

• The mass and rapidity of the photo-produced object restricts the impact-parameter phase space via fast decrease of the Bessel function for x > 1

Hadronic interaction probability

- The collision is UPC, thus the hadronic interactions must be excluded
- The factor $\exp(-P_H(b))$ ensures that the reaction is unaccompanied by hadronic interactions
- In this work we only consider the Coulomb breakup of the nucleus
- For a hard sphere nucleus model, the hadronic interaction probability is 1 for b < 2R and is zero otherwise
- More precisely one can calculating the probability of one or more hadronic interactions as a function of impact parameter

10

 $P_{ii}(b) = P_i(b) \times P_i(b)$

Coulomb excitation of the nucleus

• Let *P*_{Xn} be the probability of nuclear break-up of one nucleus to a state with any number (X) of neutrons (n). Under the assumption of a Poisson distribution, the probability of having exactly L neutrons is:

$$P_{\rm Ln}(b) = \frac{(P_{\rm Xn}^1(b))^L \times \exp(-P_{\rm Xn}^1(b))}{L!}$$

• Probability to have at least one neutrons than is:

 $P_{Xn}(b) = 1 - \exp(-P_{Xn}^1(b))$

• where $P_{Xn}^1(b)$ is the mean number of the Coulomb excitations of the nucleus to any state which emits one or more neutrons.

Coulomb excitation of the nucleus

• $P_{Xn}^1(b)$ is the mean number of the Coulomb excitations of the nucleus to any state which emits one or more neutrons

$$P_{\mathrm{Xn}}^{1}(b) = \int dk \frac{d^{3}n(b,k)}{dkd^{2}b} \sigma_{\gamma A \to A' + \mathrm{Xn}}(k)$$

- where $\sigma_{\gamma A \to A' + Xn}(k)$ is an photo-nuclear cross section determined mainly by data
- In a similar way mean number of the Coulomb excitations of the nucleus to a state with N neutrons is:

$$P_{\mathrm{Nn}}^{1}(b) = \int dk \frac{d^{3}n(b,k)}{dkd^{2}b} \sigma_{\gamma A \to A' + \mathrm{Nn}}(k)$$

• such that:
$$P_{Xn}^{1}(b) = \sum_{N=1}^{\infty} P_{Nn}^{1}(b)$$

Coulomb excitation of the nucleus

- Two neutron states can be produced either by direct two neutron emission or by two emissions of one neutron;
- Contributions to the three neutron states are from three one neutron emissions, one emission of three neutrons, or emissions of one and two neutrons

$$P_{1}(b) = P_{1n}^{1}(b) \times \exp(-P_{Xn}^{1}(b)),$$

$$P_{2}(b) = [P_{2n}^{1}(b) + \frac{(P_{1n}^{1}(b))^{2}}{2!}] \times \exp(-P_{Xn}^{1}(b)),$$

$$P_{3}(b) = [P_{3n}^{1}(b) + 2P_{2n}^{1}(b)P_{1n}^{1}(b) + \frac{(P_{1n}^{1}(b))^{3}}{3!}] \times \exp(-P_{Xn}^{1}(b))$$

• Fulfills the unitarity condition:

$$\sum_{N=1} P_{\rm Nn}(b) = P_{\rm Xn}(b)$$

 ∞

Photo-nuclear cross section

$$P_{\rm Nn}^1(b) = \int dk \frac{d^3 n(b,k)}{dk d^2 b} \sigma_{\gamma A \to A' + {\rm Nn}}(k)$$

14

- Giant dipole resonance (GDR) peak via Lorentz line fit (Breit-Wigner)
- Black points via scaling of proton/neutron cross sections
- Regge model parametrization for high energies

Photo-nuclear cross section

$$P_{\rm Nn}^1(b) = \int dk \frac{d^3 n(b,k)}{dk d^2 b} \sigma_{\gamma A \to A' + {\rm Nn}}(k)$$

15

- The GDR excitations produce mainly final states with one or two neutrons and were investigated in detail by various experiments.
- The partial cross sections, up to 10 neutrons and up to 140 MeV measured at Saclay

Neutron multiplicity

- Saclay used the partial cross sections to extract the average and the dispersion of the number of neutrons as a function of the incident energy
- Fitted to a logarithm and extrapolated to higher energies
- Comparison with RELDIS model in rather good agreement

Neutron multiplicity

• The branching ratios to each partial cross section are computed from the fit by extrapolating the arithmetic average and dispersion, and using a Gaussian approximation for the shape

Neutron energy

- Very few measurement exist for the spectra of secondary particles from mono-energetic source of photons
- Nevertheless one may have confidence in the accuracy of the evaluated spectra in case when the agreement between calculated and measured channel cross section $(\gamma, n) (\gamma, 2n)$ is good
- This is because the energy dependence strongly influences the relative population of various product nuclides when multi-particle production is possible

18

Neutron energy

- The emission spectra of the secondary particles was part of the "Photonuclear Data for Applications" project by International Atomic Energy Agency
- Tables are available in Evaluated Nuclear Data File (ENDF) format <u>https://www-nds.iaea.org/exfor/endf.htm</u>

Particle generation

- Neutron is generated in the rest frame with energy generated using the ENDF table and isotropic angular distribution
- Then it is boosted by the $\boldsymbol{\beta}$ of the beam either to positive or negative direction

Particle generation

- Neutron is generated in the rest frame with energy generated using the ENDF table and isotropic angular distribution
- Then it is boosted by the $\boldsymbol{\beta}$ of the beam either to positive or negative direction

Michal Broz - 24.9.2019 - Physics and detector requirements at zero-degree of colliders

Implementation

Code notes

https://github.com/mbroz84/noon

- Whole generator is rather small ROOT based utility
 - Class ~1000 lines + two macros and ENDF
 - Inherited from TObject
 - Using TF1, TH1D, TH2D, TGraph, TClonesArray, TTree, etc...
- To run you need an input = the k distribution
 - Invariant mass and rapidity distribution you just predicted for a current photo-production process since you are a skilled phenomenologist
 - You can run together with STARlight
 - Generator can produce flat neutron multiplicity distribution and run standalone like that
 - Interface mode = do it in other custom way within a framework you use at your experiment

Code notes

https://github.com/mbroz84/noon

- Output:
 - It can produce a TTree with TParticles
 - You can import the TClonesArray with TParticles to your framework after every event
- Units to communicate with outside world are GeV
 - The input mass should be in GeV
 - Output TParticle momenta are in GeV
- Works for ²⁰⁸Pb only for the time being
 - Near future: ¹⁹⁷Au, ¹²⁹Xe, ²³⁸U
- Only coherent photon-pomeron process
 - Near future: Two Photon process
 - Medium term: Incoherent process

Example of possible applications

• Can use theory predictions as a function of rapidity for the cross section of the coherent photonuclear production of a vector meson, together with the mass distribution of the vector meson to produce neutron multiplicities in a selected rapidity range. $\frac{\sigma_{AA \to VAA}(y)}{dy} = \int d^2b \frac{d^3n(b,y)}{dkd^2b} \sigma_{\gamma A \to VA}(y) + \int dk \frac{d^3n(b,-y)}{dkd^2b} \sigma_{\gamma A \to VA}(-y)$

Example of possible applications

- Can run as an STARlight afterburner
- An interface to STARlight is provided through the ROOT class TStarlight, so that to each event one can add the neutrons produced by the generator
- It is then trivial to pass these neutrons (along with the particles produced by STARlight) through the detailed simulation of the experiments

Summary

- Neutrons from nuclear break-up which can pile-up a photoproduction event are widely used on present HEP experiments for both, triggering and physics
- STARlight and phenomenologists can predict the event fractions for various break-up scenarios, but no Monte Carlo generator producing the emission neutron was on the market up to now
- We collected the available methods used to predict the break-up probability, expanded them using additional experimental data and nuclear modeling and made a Monte Carlo generator of the neutrons from nuclear break-up
- Generator is a ROOT based tool which can run in several ways according to the user needs
- Generator is public, available on <u>GitHub</u>

Outlook

- An updated version of $\mathbf{n_O^On}$ will appear on <u>GitHub</u> soon
 - Extended by ¹⁹⁷Au, ¹²⁹Xe and ²³⁸U nuclei
 - Nuclear break-up in γγ interactions
 - Framework for easy management of cross section datasets
- Coupling to STARlight within ALICE framework is being tested
- An extension by a model for forward neutrons in incoherent interactions is foreseen
- An extension to electron-Ion collision systems is being discussed

Backup

Neutron emission in UPC experiments

• ALICE studied the event multiplicities in various cases of neutron emission for ρ^{o} and $\psi(2S)$

Selection	Number of events	Fraction		STARLIGHT	GDL
All events	7293	100~%			
0n0n	6175	$84.7 \pm 0.4 (\text{stat.})^{+0.}_{-1.}$	$_{9}^{4}(syst.)$ %	79~%	80~%
Xn	1174	$16.1 \pm 0.4 (\text{stat.})^{+2.}_{-0.}$	$_5^2(\text{syst.})$ %	21~%	20~%
0nXn	958	$13.1 \pm 0.4 (\text{stat.})^{+0.9}_{-0.3} (\text{syst.})$ %		16~%	15~%
XnXn	231	$3.2 \pm 0.2 (\text{stat.})^{+0.4}_{-0.1}$	(syst.) %	5.2~%	4.5~%
	Data	Fraction STAR		LIGHT	RSZ
On On	20	$(71^{+9}_{-11})\%$	66%		70%
Xn	8	$(29^{+11}_{-9})\%$	34%		30%
0n Xn	7	$(25^{+11}_{-9})\%$	25%		23%
Xn Xn	1	$(4^{+8}_{-3})\%$	9%		7%

Neutron emission in UPC experiments

- STAR required signal compatible with at least one neutron in both neutron ZDCs in the trigger for ρ^o
- STAR ρ^o cross sections are published for 1n1n and XnXn emission cases

Neutron emission in UPC experiments

- CMS coherent J/ψ cross section is measured for the case when the J/y mesons are accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side (Xnon)
- UPC trigger also selects the XnXn, 1n0n, and 1n1n break-up modes.
- In the end the cross section is scaled from Xnon to total

32

Hadronic interaction probability

- In this work we only consider the Coulomb break-up of the nucleus.
- The factor $\exp(-P_H(b))$ ensures that the reaction is unaccompanied by hadronic interactions
- The mean number of projectile nucleons that interact at least once we can write as: $P_H(b) = \int d^2 \vec{r} T_A(\vec{r} - \vec{b})(1 - \exp(-\sigma_{NN}T_B(\vec{r})))$
- here we use nuclear thickness function $T_{A}($

$$d(\vec{r}) = \int dz \rho_A(\sqrt{|\vec{r}|^2 + z^2})$$

• and nuclear density for a nucleus A at distance s from its center is modeled with a Woods-Saxon distribution for symmetric nuclei

$$\rho_A(s) = \frac{\rho_0}{1 + \exp(\frac{s - R_{\rm WS}}{d})}$$

Michal Broz - 24.9.2019 - Physics and detector requirements at zero-degree of colliders

