

Correlations in UPC according to ATLAS

Miniworkshop difrakce a UPC 2019

Roman Lavička

Sep 27, 2019, Děčín

This workshop has been supported by the grant grant SVK30/19/F4.

Content

N SS

1 Long story short

- Introduction
- Complication
- Disentanglement
- 2 Analysis and technicalities
 - Data and its selection
 - Non-flow subtraction
 - Systematic uncertainties
 - What about ALICE?

Collective flow

- Collective behaviour seen in Pb+Pb, p+Pb and pp at LHC and RHIC.
- Manifests as ridge (see talk by KKG for more details).
- Question: Can we see the same in photo-nuclear reactions?

QGP or?

- These can be signatures of QGP,
 - Spatial non-uniformities of initial state → hydrodynamic expansion → final state momentum-space anisotropies (ridge)
- or momentum correlations in the initial state.
 - Lead ion system is already complicated enough.
 - Do we see a footprint of the "beam" complexity?
- Tested in collision systems with "simple" beam.
 - e^+e^- and ep collisions showed no ridge.
- Study of γ +A interactions.
 - Typical multiplicity larger than e^+e^- or ep, but smaller than pp.

This paper results

- v_2 somehow represents the flow.
- We see, there is some flow in γ +A.
- Relatively large systematics (Can ALICE do better?).
- Comparison to p+Pb and pp is shown.
- Similar p_T and multiplicity dependence.
- Overall smaller magnitude.
- That's all we can say.
- For better figures google ATLAS-CONF-2019-022

▶ ∢ ⊒

Technicalities

Can we measure it at ALICE?

э

イロト 不得 トイヨト イヨト

Data and detector coverage

- Pb+Pb collected in 2018
- $\sqrt{s_{\rm NN}} = 5.02$ TeV.
- $\mathscr{L} = 1.73 \text{ nb}^{-1}$
- Detectors (|n| < 5):
 - **zero-degree calorimeter** ($|\eta| > 8.3$),
 - forward calorimeters $(3.2 < |\eta| < 4.9)$,
 - inner-detector system (silicon pixel) ($|\eta| < 2.5$),
 - transition radiation tracker ($|\eta| < 2$).
 - central-barrel EM calorimeters ($|\eta| < 3.2$),
 - central-barrel LAr presampler ($|\eta| < 1.8$).
 - central-barrel Hadronic calorimeter ($|\eta| < 1.7$).
- Axial magnetic field of 2 Tesla.

- 34

Data selection

Introducing the magical cut!

- 32

イロト 不得 トイヨト イヨト

Trigger and offline cuts

- Final rate of accepted events: 1-4 kHz (ALICE was set to 8 kHz).
- Several triggers:
 - Online trigger:
 - **ZDC** have at least 1 neutron in Pb-going side and 0 in γ -going side (0NXN),
 - max energy in the calorimeter of 200 GeV,
 - minimum Bias required at least 1 track with $p_T > 0.4$ GeV,
 - high multiplicity triggers (HMT) needs 15, 25 and 35 tracks from the same vertex,
 - HMT needs max energy of FCal in γ -going side (separate peripheral events),
 - special trigger to look for physics background energy in both ZDC sides.
 - Offline selections:
 - Some quality criteria on track based on *pp* data-taking,
 - tracks have $p_T > 0.4$ GeV,
 - \blacksquare tracks have $|\eta|<$ 2.5,
 - DCA less than 1.5 mm,
 - vertex is z < 90 mm.

(4) E > (4) E >

Reconstructed pseudorapidity gap quantities (yes, its a name)

3 competing processes:

- Photo-nuclear collision (we want them),
- peripheral hadronic Pb+Pb collisions,
- dissociative $\gamma \gamma \rightarrow X$.
- Use rapidity gaps to distinguish.
- Hard to find a large one amongst many fragments.
- Introduction of sum of gaps as follows:
 - Order tracks and clusters in η ,
 - Include $\Delta \eta$ of adjascent tracks to final sum if > 0.5.

$$\Sigma_{\gamma} \Delta \eta_{\text{gap}}, \qquad \Sigma_{\text{A}} \Delta \eta_{\text{gap}}$$
 (1)

Reconstructed pseudorapidity gap quantities (yes, its a name)

10

5

$$\Sigma_{\gamma} \Delta \eta_{gap} > 2.5, \qquad \Sigma_{A} \Delta \eta_{gap} < 3$$
 (2)

2

3

4 $\Sigma_{\nu} \eta_{qap}$

 $\Sigma_A \eta_{gap}$

3

2

Sep 27, 2019, Děčín 11/19

Non-flow subtraction

Beauty and the Beast!

-	
Roman	DWICKS
1 Onnan	Lavicha

э

▶ ∢ ⊒

What is correlation function and how you measure it

Correlation is a function of pair relative separation in pseudorapidity and azimuth.

$$\Delta \phi = \phi^{a} - \phi^{b}, \qquad \Delta \eta = \eta^{a} - \eta^{b} \qquad (3)$$
$$\Upsilon(\Delta \phi, \Delta \eta) = \frac{1}{N_{a}} \left\langle \frac{\mathbf{d}^{2} N_{pair}}{\mathbf{d} \Delta \phi \cdot \mathbf{d} \Delta \eta} \right\rangle \qquad (4)$$

$$Y(\Delta \phi) = \int_{|\Delta \eta|=2.}^{|\Delta \eta|=5.} (\Delta \phi, \Delta \eta)$$
 (5)

How to get the flow coefficients

$$v_{n,n} = v_n^2 \tag{6}$$

- You want the coefficients (v₂ and v₃) of the fourrier decomposition of the correlation function.
- To remove non-flow effects, ATLAS standardly uses this template fit.

$$\mathcal{Y}^{\mathsf{HM}}(\Delta\phi) = L\mathcal{Y}^{\mathsf{LM}}(\Delta\phi) + G\left\{1 + 2\sum_{n=2}^{3} v_{n,n}\cos(n\Delta\phi)\right\}$$

$$= L\mathcal{Y}^{\mathsf{LM}}(\Delta\phi) + \mathcal{Y}^{\mathsf{ridge}}(\Delta\phi)$$
(8)

HM means high multiplicity, LM means low multiplicity.

Roman Lavička

Image: A math a math

Non-flow subtraction

Roman Lavička

Sep 27, 2019, Děčín 15 / 19

Fourrier vs. template fits

• Fourrier coeff. of simultanoues fit contains the background, mainly jet contribution.

• Hint: Higher p_t or low number of tracks corresponds to more jet-like event.

Pomon Lovecka	

Systematic uncertainties

Dominant contributions taken from paper

- 3

Systematics

- Dominant uncertainties:
 - pair pseudorapidity difference (5-15%),
 - Pair chosen from $2.0 < |\Delta \eta| < 5.0$.
 - Lower bound to avoid jet-like contribution.
 - Varied from 1.8 to 2.2.
 - low multiplicity reference (10-35%),
 - Y^{LM} chosen from events with 15-20 tracks.
 - i.e. distribution of photon energies can be different than in Y^{HM}
 - Analysis redone with Y^{LM} chosen from events with 10-15 tracks.
 - exclusion of tracks from $\Sigma_{\gamma} \Delta \eta_{gap}$ (5-10%).
 - Investigating effect of these excluded tracks to the two-particle correlation.
- Other contributions:
 - trigger efficiency, event selection, acceptance effects in correlation function, reconstruction inefficiency, low multiplicity shape parametrisation, multiplicity dependence of flow coefficients, $\Delta \phi$ binning

What about ALICE?

3

< □ > < 同

BACK UP

(日)

Roman Lavička

Sep 27, 2019, Děčín 21 / 19

э

Roman Lavička

Sep 27, 2019, Děčín 22 / 19

- 32

Sep 27, 2019, Děčín 23 / 19

(日) (四) (日) (日) (日)

Sep 27, 2019, Děčín 24 / 19

э

Sep 27, 2019, Děčín 25 / 19