Determination of radon leakage from sample containers for gamma spectrometry measurement of ²²⁶Ra

Authors: N.S. Syam, S.Y. Lim, H.Y. Lee, S.H. Lee

Kyungpook National University
Presented by SOOYEON LIM

INTRODUCTION MATERIALS AND METHODS RESULTS AND DISCUSSION CONCLUSION

Introduction

Abstract

Marinelli Beaker Release Fraction (MB_{LR})

Measuring Radium in Soil Sample by HPGe

Table 1. Advantages and disadvantages of gamma spectrometry methods

Gamma spectrometry	Advantage	Disadvantage
Direct measurement: analyzing Ra-226 by its 186 keV peak.	 ✓ Versatile ✓ easy to use ✓ non-destructive ✓ relatively cheap method ✓ Repeatability ✓ easy sample preparation ✓ easier spectrum analysis 	 ✓ weak yields r-line 186.2 keV (3.59%), ✓ an interference with 235U direct line 185.7 keV
Indirect measurement : analyzing Ra-226 by its progenies' gamma rays using radioactive equilibrium.		 ✓ longer time needed to achieve secular equilibrium (at least 21 days) ✓ radon leakage from the measurement container causes the equilibrium cannot be reached.

Materials and Methods

Samples and sealing methods

Table 2. Samples and sealing methods for HPGe and radon chamber measurement

Soil sample
Uljin soil sample
Uljin 1: 522.6 gram (Radon Chamber)

Uljin 2: 512.4 gram (HPGe)

Reference material IAEA 434 Phosphogypsum,

250 gram

Marinelli beaker Polypropylene Snap-on lid wi

Sealing method

Snap-on lid with inner lid

Vol: 450 mL

MB0: open

MB1: only lid without sealing

MB2: lid and sealed with paraffin film

MB3: sealed with vacuumed plastic bag

Figure 1. Marinelli beaker sealing method (a) lid without sealing, (b) lid and paraffin film sealing, (c) vacuumed plastic bag sealing

Materials and Methods

HPGe measurement system

Figure 2. Experimental set up for radon leakage measurement.

Detector specification

- ORTEC GEM 15P4 coaxial HPGe
- 70mm diameter endcap; equipped with 16384 channels MCA
- 0.82 keV for the 122 keV-peak resolution and is 15% for the 1.33 MeV Co-60 peak relative efficiency.

Energy and efficiency calibration

Using CRM volume source in 450mL Marinelli Beaker of agar medium, certified by KRISS, consists of ²⁴¹Am, ¹⁰⁹Cd, ⁵⁷Co, ¹³⁹Ce, ⁵¹Cr, ¹¹³Sn, ⁸⁵Sr, ¹³⁷Cs, ⁶⁰Co, and ⁸⁸Y with nominal density of 1.001 g/cm3.

Measurement set up

- Samples' gamma ray spectra were taken by HPGe detector for each of 86400 seconds during 21 days.

Materials and Methods

Figure 3. Experimental set up for gamma ray spectrum measurement.

> Radon accumulation chamber

- Acrylic material
- Dimension= 30 cm X 30 cm X 30 cm
- Sealed with rubber
- Effective Volume= 23.41L
- Averaged BKGRND air radon = 12.38 Bq/m³

Chamber tightness test

- Measuring decaying radon concentration in the chamber.
- Radon leakage from chamber was determined by comparing the theoretical decay graph of radon and the measured decay.

Measurement set up

- Radon leakage from Marinelli Beaker was measured by RAD7 detector each of every hour continuously for 21 days

HPGe measurement

HPGe measurement result

Figure 4. IAEA-434 reference material gamma spectrum measured by HPGe and analyzed by Aptec program

HPGe measurement result (IAEA-434)

Figure 5. IAEA-434 reference material measurement result (MB3).

Radionuclide	Certified Value [Bq/kg]	Uncertainty
²¹⁰ Pb	680	58
²²⁶ Ra	780	62
²³⁰ Th	211	9
234U	120	9
238U	120	11

24th day measured result

²²⁶Ra:885.5 ± 48.8

²¹⁴Bi: 722.8 ± 47.8

²¹⁴Pb: 744.2 ± 39.1

Calculated concentration

²²⁶Ra: 776.1 ± 62Bq/kg

 214 Pb: 766.0 ± 61 Bq/kg

2% difference

- Resulted direct measurement value of ²²⁶Ra was not agreed well with certified value of IAEA-434 possibly caused by low efficiency of P-type HPGe for lower gamma energy.
- Radon progeny result (indirect measurement) is used for further analysis.

HPGe measurement result (Soil)

Figure 6. ²¹⁴Bi and ²¹⁴Pb build-up for different sealing methods measured by HPGe.

> Direct measurement (186 keV of ²²⁶Ra)

- Results from 3 different sealing methods show similar results with averaged values which were 108.91, 110.04 and 106.31 Bq/kg respectively for MB1, MB2, and MB3.

← Interference from 185.7 keV peak of ²³⁵U.

> Indirect measurement (²¹⁴Bi and ²¹⁴Pb peaks)

- Results show large discrepancy between ²²⁶Ra and ²²²Rn progenies.

← Radon leakage from beaker so that equilibrium cannot be reached.

- Radon progenies slightly built-up for MB2 and MB3, while for MB1 did not.

Free radon inside leak tight Marinelli beaker (MB3)

$$C_{MB} = EF * C_{Ra} * \frac{m}{V}$$

$$C_{MB} = 0.124 * 50.12 \frac{Bq}{Kg} * 1.156 \frac{g}{mL} = 7184Bq/m^3$$

Radon Chamber measurement

Chamber tightness test result

Figure 7. Chamber tightness test result.

Radon Build-up Formula

The radon accumulation chamber has a non negligible radon leakage, therefore the radon buildup must be corrected using the following equation (Scholten et al, 2013):

$$C_{(t)} = C_{\infty} \times (1 - e^{-\lambda \times (1 + a_v) \times t})$$

$$\bar{C} = C_{\infty} \times (1 + a_{v})$$

Normalized leak rate:

$$a_v = \frac{\lambda_{eff}}{\lambda_{Rn}} = 1.97$$

Radon chamber measurement result (Soil)

 C_{∞} = equilibrium radon concentration in chamber (measured) \bar{C} = non leakage radon concentration in chamber (calculated with correction factor of λ_V)

Leak-rate corrected radon concentration in radon chamber: $C = \bar{C} \times (1 - e^{-\lambda \times t})$

20

Figure 8. Radon chamber measurement result.

Rn

Marinelli beaker release fraction $MB_{LR} = \bar{C}/C_{MB}$ $C_{MR} = 7184Bq/m^3$

- Gas

- Solid

Table 4. Comparing Marinelli beaker release fraction with 4 measurements

Sample and sealing methods	$\bar{C}(^{\mathrm{Bq}}/_{\mathrm{m}^3})$	Marinelli beaker Release Fraction
Uljin1 - MB0	225	0.031
Uljin1 - MB1	115	0.016
Uljin1 - MB2	65	0.009
Uljin1 - MB3	10 (~Background)	\ll

Conclusion

- 1. Direct measurement and indirect measurement by P-type HPGe shows different concentration between soil and reference material which may caused by:
 - Lower efficiency for low gamma energy measurement (< 200 keV)
 - Interference from other ²³⁵U gamma peak to ²²⁶Ra gamma peak
 - Radon leakage from Marinelli beaker that inhibit secular equilibrium between Radium and Radon progenies
- 2. IAEA-434 indirect measurement results using MB3 sealing show very low difference with certified value (±2 %) therefore MB3 can be considered as radon leak tight.
- 3. The ²¹⁴Pb concentrations in soil obtained by HPGe indirect measurement were MB3 > MB2 > MB1. This result was verified by radon chamber measurement which showed accumulated radon concentration (leaked radon) MB3 < MB2 < MB1.
- 4. Radon release fraction (MB_{LR}) were determined as MB3 \langle MB2 \langle MB1. For low ²²⁶Ra activity samples the three sealing methods have low radon leakage rate (\langle 5 %). Further study will be needed for relatively high ²²⁶Ra activity samples.
- 5. The results show that simple and cheap sealing method using vacuumed plastic bag can effectively minimize the leakage.

References

- [1] Scholten, J.C., Osvath, I., Pham, M.K., 2013. 226Ra measurements through gamma spectrometric counting of radon progenies: How significant is the loss of radon? Mar. Chem. 156, 146 152. https://doi.org/10.1016/j.marchem.2013.03.001
- [2] Baumgartner, A., Stietka, M., Kabrt, F., Wiedner, H., Maringer, F.J., 2017. Study of particular problems appearing in NORM samples and recommendations for best practice gamma-ray spectrometry. Appl. Radiat. Isot. 126, 285 288. https://doi.org/10.1016/j.apradiso.2016.12.035
- [3] Tsapalov, A., Kovler, K., 2018. Control of radon emanation at determination of activity Concentration index for building materials. Constr. Build. Mater. 160, 810 817. https://doi.org/10.1016/j.conbuildmat.2017.11.116
- [4] Bonczyk, M., Samolej, K., 2019. Testing of the radon tightness of beakers and different types of sealing used in gamma-ray spectrometry for 226 Ra concentration determination in NORM. J. Environ. Radioact. 205 206, 55 60. https://doi.org/10.1016/j.jenvrad.2019.05.007

