Determination of radon leakage from sample containers for gamma spectrometry measurement of ²²⁶Ra Authors: N.S. Syam, S.Y. Lim, H.Y. Lee, S.H. Lee Kyungpook National University Presented by SOOYEON LIM INTRODUCTION MATERIALS AND METHODS RESULTS AND DISCUSSION CONCLUSION ## Introduction Abstract #### Marinelli Beaker Release Fraction (MB_{LR}) #### Measuring Radium in Soil Sample by HPGe **Table 1**. Advantages and disadvantages of gamma spectrometry methods | Gamma spectrometry | Advantage | Disadvantage | |--|--|--| | Direct measurement: analyzing Ra-226 by its 186 keV peak. | ✓ Versatile ✓ easy to use ✓ non-destructive ✓ relatively cheap method ✓ Repeatability ✓ easy sample preparation ✓ easier spectrum analysis | ✓ weak yields r-line 186.2 keV (3.59%), ✓ an interference with 235U direct line 185.7 keV | | Indirect measurement : analyzing Ra-226 by its progenies' gamma rays using radioactive equilibrium. | | ✓ longer time needed to achieve secular equilibrium (at least 21 days) ✓ radon leakage from the measurement container causes the equilibrium cannot be reached. | ## **Materials and Methods** ## Samples and sealing methods **Table 2**. Samples and sealing methods for HPGe and radon chamber measurement Soil sample Uljin soil sample Uljin 1: 522.6 gram (Radon Chamber) Uljin 2: 512.4 gram (HPGe) Reference material IAEA 434 Phosphogypsum, 250 gram Marinelli beaker Polypropylene Snap-on lid wi Sealing method Snap-on lid with inner lid Vol: 450 mL MB0: open MB1: only lid without sealing MB2: lid and sealed with paraffin film MB3: sealed with vacuumed plastic bag **Figure 1**. Marinelli beaker sealing method (a) lid without sealing, (b) lid and paraffin film sealing, (c) vacuumed plastic bag sealing ## **Materials and Methods** ## HPGe measurement system Figure 2. Experimental set up for radon leakage measurement. #### Detector specification - ORTEC GEM 15P4 coaxial HPGe - 70mm diameter endcap; equipped with 16384 channels MCA - 0.82 keV for the 122 keV-peak resolution and is 15% for the 1.33 MeV Co-60 peak relative efficiency. #### Energy and efficiency calibration Using CRM volume source in 450mL Marinelli Beaker of agar medium, certified by KRISS, consists of ²⁴¹Am, ¹⁰⁹Cd, ⁵⁷Co, ¹³⁹Ce, ⁵¹Cr, ¹¹³Sn, ⁸⁵Sr, ¹³⁷Cs, ⁶⁰Co, and ⁸⁸Y with nominal density of 1.001 g/cm3. #### Measurement set up - Samples' gamma ray spectra were taken by HPGe detector for each of 86400 seconds during 21 days. ## **Materials and Methods** Figure 3. Experimental set up for gamma ray spectrum measurement. #### > Radon accumulation chamber - Acrylic material - Dimension= 30 cm X 30 cm X 30 cm - Sealed with rubber - Effective Volume= 23.41L - Averaged BKGRND air radon = 12.38 Bq/m³ #### Chamber tightness test - Measuring decaying radon concentration in the chamber. - Radon leakage from chamber was determined by comparing the theoretical decay graph of radon and the measured decay. #### Measurement set up - Radon leakage from Marinelli Beaker was measured by RAD7 detector each of every hour continuously for 21 days # HPGe measurement ### HPGe measurement result Figure 4. IAEA-434 reference material gamma spectrum measured by HPGe and analyzed by Aptec program ## HPGe measurement result (IAEA-434) Figure 5. IAEA-434 reference material measurement result (MB3). | Radionuclide | Certified Value
[Bq/kg] | Uncertainty | |-------------------|----------------------------|-------------| | ²¹⁰ Pb | 680 | 58 | | ²²⁶ Ra | 780 | 62 | | ²³⁰ Th | 211 | 9 | | 234U | 120 | 9 | | 238U | 120 | 11 | #### 24th day measured result ²²⁶Ra:885.5 ± 48.8 ²¹⁴Bi: 722.8 ± 47.8 ²¹⁴Pb: 744.2 ± 39.1 #### Calculated concentration ²²⁶Ra: 776.1 ± 62Bq/kg 214 Pb: 766.0 ± 61 Bq/kg 2% difference - Resulted direct measurement value of ²²⁶Ra was not agreed well with certified value of IAEA-434 possibly caused by low efficiency of P-type HPGe for lower gamma energy. - Radon progeny result (indirect measurement) is used for further analysis. ## HPGe measurement result (Soil) ## **Figure 6**. ²¹⁴Bi and ²¹⁴Pb build-up for different sealing methods measured by HPGe. #### > Direct measurement (186 keV of ²²⁶Ra) - Results from 3 different sealing methods show similar results with averaged values which were 108.91, 110.04 and 106.31 Bq/kg respectively for MB1, MB2, and MB3. ← Interference from 185.7 keV peak of ²³⁵U. #### > Indirect measurement (²¹⁴Bi and ²¹⁴Pb peaks) - Results show large discrepancy between ²²⁶Ra and ²²²Rn progenies. ← Radon leakage from beaker so that equilibrium cannot be reached. - Radon progenies slightly built-up for MB2 and MB3, while for MB1 did not. Free radon inside leak tight Marinelli beaker (MB3) $$C_{MB} = EF * C_{Ra} * \frac{m}{V}$$ $$C_{MB} = 0.124 * 50.12 \frac{Bq}{Kg} * 1.156 \frac{g}{mL} = 7184Bq/m^3$$ # Radon Chamber measurement ## Chamber tightness test result Figure 7. Chamber tightness test result. #### Radon Build-up Formula The radon accumulation chamber has a non negligible radon leakage, therefore the radon buildup must be corrected using the following equation (Scholten et al, 2013): $$C_{(t)} = C_{\infty} \times (1 - e^{-\lambda \times (1 + a_v) \times t})$$ $$\bar{C} = C_{\infty} \times (1 + a_{v})$$ Normalized leak rate: $$a_v = \frac{\lambda_{eff}}{\lambda_{Rn}} = 1.97$$ ## Radon chamber measurement result (Soil) C_{∞} = equilibrium radon concentration in chamber (measured) \bar{C} = non leakage radon concentration in chamber (calculated with correction factor of λ_V) Leak-rate corrected radon concentration in radon chamber: $C = \bar{C} \times (1 - e^{-\lambda \times t})$ 20 Figure 8. Radon chamber measurement result. Rn Marinelli beaker release fraction $MB_{LR} = \bar{C}/C_{MB}$ $C_{MR} = 7184Bq/m^3$ - Gas - Solid Table 4. Comparing Marinelli beaker release fraction with 4 measurements | Sample and sealing methods | $\bar{C}(^{\mathrm{Bq}}/_{\mathrm{m}^3})$ | Marinelli beaker Release Fraction | |----------------------------|---|-----------------------------------| | Uljin1 - MB0 | 225 | 0.031 | | Uljin1 - MB1 | 115 | 0.016 | | Uljin1 - MB2 | 65 | 0.009 | | Uljin1 - MB3 | 10 (~Background) | \ll | ## Conclusion - 1. Direct measurement and indirect measurement by P-type HPGe shows different concentration between soil and reference material which may caused by: - Lower efficiency for low gamma energy measurement (< 200 keV) - Interference from other ²³⁵U gamma peak to ²²⁶Ra gamma peak - Radon leakage from Marinelli beaker that inhibit secular equilibrium between Radium and Radon progenies - 2. IAEA-434 indirect measurement results using MB3 sealing show very low difference with certified value (±2 %) therefore MB3 can be considered as radon leak tight. - 3. The ²¹⁴Pb concentrations in soil obtained by HPGe indirect measurement were MB3 > MB2 > MB1. This result was verified by radon chamber measurement which showed accumulated radon concentration (leaked radon) MB3 < MB2 < MB1. - 4. Radon release fraction (MB_{LR}) were determined as MB3 \langle MB2 \langle MB1. For low ²²⁶Ra activity samples the three sealing methods have low radon leakage rate (\langle 5 %). Further study will be needed for relatively high ²²⁶Ra activity samples. - 5. The results show that simple and cheap sealing method using vacuumed plastic bag can effectively minimize the leakage. ## References - [1] Scholten, J.C., Osvath, I., Pham, M.K., 2013. 226Ra measurements through gamma spectrometric counting of radon progenies: How significant is the loss of radon? Mar. Chem. 156, 146 152. https://doi.org/10.1016/j.marchem.2013.03.001 - [2] Baumgartner, A., Stietka, M., Kabrt, F., Wiedner, H., Maringer, F.J., 2017. Study of particular problems appearing in NORM samples and recommendations for best practice gamma-ray spectrometry. Appl. Radiat. Isot. 126, 285 288. https://doi.org/10.1016/j.apradiso.2016.12.035 - [3] Tsapalov, A., Kovler, K., 2018. Control of radon emanation at determination of activity Concentration index for building materials. Constr. Build. Mater. 160, 810 817. https://doi.org/10.1016/j.conbuildmat.2017.11.116 - [4] Bonczyk, M., Samolej, K., 2019. Testing of the radon tightness of beakers and different types of sealing used in gamma-ray spectrometry for 226 Ra concentration determination in NORM. J. Environ. Radioact. 205 206, 55 60. https://doi.org/10.1016/j.jenvrad.2019.05.007