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Basic concepts of neural networks

supervised learning algorithm (imitation of biological neural network),
let T = ((x(1), y (1)), . . . , (x(p), y (p))), where p ∈ N is number of
observations, j ∈ p̂ : x(j) is input vector and j ∈ p̂ : y (j) is labeled
output, be a dataset,
T is further divided into training set, testing set and validation set
(different techniques like k-fold cross-validation can be used),

concept of neural networks is built upon universal approximation
theorem
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Most widely used architecture

multilayer perceptron (MLP)

Figure: Multilayer perceptron with 4 inputs, 1 output and 1 hidden layer.

in each layer for each neuron : z = f

 |I|∑
i=1

wixi + θ

 (1)
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Optimization methods

loss function measures the difference between output ŷ (j) produced by
neural network (with input x(j)) and labeled y (j) from T ,

regression: mean squared error as L = 1
p
∑p

j=1
(
y (j) − ŷ (j))2,

classification:
cross-entropy for binary classification as:

L = − 1
p

p∑
j=1

y (j) log(ŷ (j)) + (1− y (j)) log(1− ŷ (j)),

cross-entropy for multi-class classification as:

L = − 1
p

p∑
j=1

#classes∑
i=1

y (j)
i log(ŷ (j)

i ),

categorical cross-entropy = softmax (on ŷ (j)) + cross-entropy,
goal is to find global minimum of L with respects to weights matrix W
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Optimization & Regularization methods

gradient descent,
stochastic gradient descent (randomly selected samples to compute
gradients) and its numerous modifications, e. g. Adam (Adaptive
Moment Estimation; adaptive change of step length etc.),
backpropagation algorithm,
regularization to loss function:

to loss function: e. g. L = 1
p

p∑
i=1

Lj︸ ︷︷ ︸
data loss

+λ
∑

k

∑
l

W 2
k,l︸ ︷︷ ︸

regularization loss

(L2 norm penalty),

in architecture: dropout (randomly excluding neurons)
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Measures of classification goodness

accuracy (simple correct predictions:all predictions on test set ratio)
confusion matrix

Figure: Confusion matrix definition.

F1 score for binary classification, equals 2 Precision×Recall
Precision+Recall , where

Precision = TP
TP+FP and Recall = True Positive Rate (TPR) = TP

TP+FN .
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Measures of classification goodness

receiver operating characteristic (ROC), area under curve (AUC)

Figure: ROC and AUC vizualization.

True Positive Rate (TPR) = TP
TP+FN , False Positive Rate (FPR) = FP

TN+FP
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Convolutional neural network

specially effective with visual data, widely used in computer vision
layers typical for CNN: convolution and pooling layers (and flatten)
consists of feature learning and classification

Figure: Demonstration of CNN architecture.
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Convolution layer
2D convolution with kernel K

(I ∗ K )(i , j) =
k∑

m=−k

k∑
n=−k

I(m, n)K (i −m, j − n)

stride corresponds to pixel shift
padding (e. g. zero padding) used for not lowering dimension
(information loss prevention)

Figure: Convolution visualization (with stride 1).
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Pooling

method for dimensionality reduction
max pooling (most used), average pooling

Figure: Pooling.
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Convolutional neural network architectures

kernels in the first convolutional layer detect low-level features (edges
and curves),
kernels in higher layers encode more abstract features,
by stacking several convolutional and pooling layers, higher-level
feature representations could be gradually extracted,

Figure: Example of CNN architecture (AlexNET).
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Convolutional neural network architectures

benchmark datasets: MNIST, cifar10, ImageNet (ILSVRC challenge)
breakthrough in 2012 (AlexNet)
great successes in next years: LeNet (Inception), VGG, ResNet,
ResNext; more in Mira’s presentation

Figure: Different CNN architectures.
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Experiment protoDUNE

Liquid Argon Time Projection Chambers (LArTPC) experiment
DUNE, protoDUNE: Fermilab, CERN collaboration
dataset primarily focused on classification of electron, muon and tau
neutrino; secondarily on other variables’ classification (interaction
type, number of particles in the process)
optimizer: SGD
binary cross-entropy (for binary classification of neutrino/antineutrino)
and categorical cross-entropy (for multi-class classification for others)
architecture: ResNet18 with primarily with one output layer,
secondarily with seven output layers
in Tensorflow 1.13.1, Python 3.6
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Experiment protoDUNE

Overall results by DUNE CNN team (accuracies in %) tested on
protoDUNE Monte Carlo samples (MCC8.1):

neutrino/antineutrino: 73.5,
flavour: 90.3,
interaction type: 71.5,
# protons: 81.2 (0, 1, 2, 3+),
# pions: 84.1 (0, 1, 2, 3+),
# pizeros: 90.9 (0, 1, 2, 3+),
# neutrons: 99.1 (0, 1, 2, 3+; but almost all the events have 0
neutrons)
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Future goals & Conclusion

Future goals:
other metrics
3D convolutional neural network
sparse convolutional network

Conclusion:
we have given a brief introduction into neural network and its
convolution aspects
we have discussed protoDUNE experiment classification results
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Thank you for your attention
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Variables’ classes

neutrino/antineutrino
flavour: CC (charged current) νµ, CC νe , CC ντ , NC (neutral
current),
interaction type: CC quasi electric, CC Res, CC DIS, CC other
# protons: 0, 1, 2, 3+,
# pions: 0, 1, 2, 3+,
# pizeros: 0, 1, 2, 3+,
# neutrons: 0, 1, 2, 3+; but almost all the events have 0 neutrons
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