Proton structure...

...what hides inside nucleons and how to measure it?

Dagmar Bendová WEJČF 2020, Bílý potok

17.1.2020

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Rutherford scattering - probing atoms

- Scattering of α particles on a gold foil
- Small scattering angles expected \rightarrow large angles observed
- Positive charge and most of the mass are concentrated in the centre of the atom in a small volume

 $\rightarrow \, \text{nucleus}$

• Proton discovered in further experiments.

$$e(k) + A \rightarrow e(k') + A;$$
 $k - k' = Q^2$

- Measurements of the charge distribution of nuclei.
- Modification of point-like scattering cross section

 $\frac{\mathrm{d}\sigma}{d\Omega} = |F(Q^2)|^2 \left(\frac{\mathrm{d}\sigma}{d\Omega}\right)_{\mathrm{point}}$

ightarrow F(q) is a Fourrier transform of charge density ho(r) – form factor.

• Parametrization of the size of nuclei

$$r = r_0 A^{1/3}$$
 [fm]

• Size of the proton $r_p pprox 1 \ {
m fm}$

Deep inelastic scattering (DIS) - probing nucleons

$$e(k) + p \rightarrow e(k') + X$$

- In order to see smaller structures, one needs highly energetic probe
- With high Q^2 photons, one can distinguish structure at sub-nucleonic scale

M. Thomson - Modern Particle Physics, Cambridge Uni. Press, 2013

• DIS cross section

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4} \left[y^2 F_1(x,Q^2) + (1-y)\frac{F_2(x,Q^2)}{x} \right]$$

• F_1 , F_2 – structure functions, include photon-proton interaction.

DIS in Feynmann's parton model picture

- Scattering of γ^* on one of the constituent partons.
- Infinite momentum frame incoming particles carry only longitudinal momentum.
- Partons carry fraction x of the proton momentum P.
- Electron-parton scattering cross section

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4}\left[(1-y) + \frac{y^2}{2}\right]\sum_i e_i^2 f_i(x)$$

Parton distribution functions $f_i(x)$ (PDF)

- Functions $f_i(x)$ give a probability to find a parton of kind *i* and with longitudinal momentum fraction x inside the proton.
- Bjorken scaling PDFs don't depend on Q^2 of the probing photon.
- Partons are fermions relations between PDFs and structure functions

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 f_i(x)$$
 $F_2(x) = \sum_i e_i^2 x f_i(x)$

 \rightarrow F₂(x) = 2xF₁(x) - Callan-Gross relation

Ann. Rev: Nucl. Sci. 22,203 (1972)

Something is clearly missing here! :(

Chýla - Quarks, partons and QCD; CERN PDFLIB

Let's add sea quarks

• proton =
$$u_v + u_v + d_v + (u_s + \bar{u}_s) + (d_s + \bar{d}_s) + (s_s + \bar{s}_s)^{[1]}$$

$$\frac{F_2^{ep}(x)}{x} = \frac{4}{9} \left[u^p(x) + \bar{u}^p(x) \right] + \frac{1}{9} \left[d^p(x) + \bar{d}^p(x) \right] + \frac{1}{9} \left[s^p(x) + \bar{s}^p(x) \right]$$
(1)

0.2

0

10-4

10⁻³

10-2

• Sum rules

$$\int_{0}^{1} u_{v}(x) dx = 2$$

$$\int_{0}^{1} d_{v}(x) dx = 1$$

$$\int_{0}^{1} [q_{s}(x) - \bar{q}_{s}(x)] dx = 0$$

$$\int_{0}^{1} [q_{s}(x) - \bar{q}_{s}(x)] dx = 0$$

This looks better. :)

~

GeV++2

10-1

Is that all?

 Fraction of the proton momentum carried by all q and q

 together

$$\int_0^1 x \Sigma(x) \mathrm{d}x = \frac{18}{5} \int_0^1 F_2^{eN}(x) \mathrm{d}x$$

• Naive expectation

$$\int_0^1 x \Sigma(x) \mathrm{d}x = 1$$

• Experimental value

$$\int_0^1 x \Sigma(x) \mathrm{d}x \approx 0.5$$

• Other, electrically neutral partons in proton \rightarrow **gluons**

Also Bjorken scaling violation observed!

Evolution of proton structure

- Composition of the proton changes with x and Q^2 .
- At low energies proton dominated by valence quarks.
- At large energies gluons dominate.
- Parton distributions functions (PDF) are universal.

Are gluon densities growing to infinity?

Figure 1: Diagram picturing the QCD evolution of the partonic structure of the proton.

C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

- Evolution with increasing Q² described by DGLAP equations.
- By fixing the scale of the process, one can fix the position in ln Q².
- Going to smaller x, one can reach the saturation scale Q²_S(x)
 - Below Q²₅(x) → dilute regime, linear evolution of the gluon density (BFKL).
 - Above Q²₅(x) → dense regime, non-linear evolution of the gluon density (JIMWLK, BK).

Polarized PDFs

• f₁ – regular PDFs

•
$$g_{1i} = q_i^+(x) - q_i^-(x) = \Delta q(x)$$
 - helicity

 \rightarrow difference in probabilities to find quarks with their spin aligned or antialigned to the spin of longitudinally polarized nucleon

• h_1 – transversity

 \rightarrow correlation between the transversally aligned spins of the quark and nucleon

Measurement of polarized PDFs

- Polarized PDFs give complete description of the nucleon structure in terms of *x* and spins.
- Measurement through polarized deep inelastic scattering
 - \rightarrow longitudinally polarized leptons
 - \rightarrow longitudinally/transversally polarized nucleons

Adding transverse degree of freedom in momentum space

- In addiction to longitudinal momenta of partons, we consider also their intrinsic transverse momenta k_x, k_y
- The simplest transverse momentum distribution unpolarized PDF with \vec{k}_T -dependence

$$f_1^q(x, \vec{k}_T)$$

• PDF obtained back by integrating over \vec{k}_T : $\int d\vec{k}_T f_1^q(x, \vec{k}_T) = f_1^q(x)$

How do we know partons carry transverse momentum?

- For a fast moving proton $k_T \ll xP$
- One can use transverse spin can correlate with parton's \vec{k}_T as a probe.
- Single transverse spin asymmetry (SSA)
 - "Left-right" asymmetry of produced particles from the hadronic scattering of transversaly polarized protons by an unpolarized proton.
 - Should vanish if partons have only longitudinal momenta.

$$A_N = \frac{L-R}{L+R} = \frac{\sigma^{\uparrow} - \sigma}{\sigma^{\uparrow} + \sigma}$$

STAR Collaboration, Phys. Rev. D 86, 051101

Processes suitable for measuring TMDs

- TMDs are not universal (unlike PDFs) \rightarrow process dependent
 - \rightarrow however universality can be restored
- Several available processes
 - Semi-inclusive deep inelastic scattering $(e + p \rightarrow e' + h + X)$ COMPASS (SPS - CERN), HERMES (DESY), JLab, EIC
 - Drell-Yan process $(h_A + h_B \rightarrow l^+ + l^-)$ PANDA (FAIR), COMPASS
 - Diffractive dijet production $(p + A \rightarrow dijets + X)$
 - $e^+ + e^- \rightarrow \text{pions} \text{BELLE}$, BaBar
- Final-state transverse momentum << hardest scale in the process.

SIDIS (TMDs convoluted with fragmentation functions)

Drell-Yan (direct acces to TMDs)

Transverse momentum distribution (TMD) functions

- At LO, 8 TMDs are needed for full description of nucleon structure
- 5 new distributions vanish when integrating over \vec{k}_T .
- 3 PDFs are the only TMDs which survive integration over \vec{k}_T .

Sivers function

- Sivers function unpolarized quark distribution in a transversely polarized proton.
- Introduced by D. Sivers to describe SSA measured in inclusive hadron production in pp
- Due to the presence of non-zero phase, the time reversal causes

$$f_{1T}^{\perp q}(SIDIS) = -f_{1T}^{\perp q}(DY)$$

• Measurement of the Sivers function in SIDIS – separation of $f_{1T}^{\perp q}$ through angular dependence

HERMES Collaboration, Phys. Rev. Lett 103, 152002

A. Accardi et al., Eur. Phys. J. A52, no. 9, 268 (2016)

- From naive quark model spins of valence quarks sum up to nucleon spin
- "Spin crisis" in 1987
 - EMC experiment (CERN) announced an unexpected small value of quark contribution to the proton spin $\Delta\Sigma=0.12\pm0.09\pm0.14$
 - Today $\Delta\Sigma\approx 30\%$

Decomposition of the proton spin:

Y. Hatta, lecture given at CFNS Summer School 2019

A. Accardi et al., Eur. Phys. J. A52, no. 9, 268 (2016)

Orbital angular momentum (OAM) of partons

- Should contribute to the proton spin.
- TMDs provide correlations of transverse motion with quark spin and orbital motion
- Off-diagonal TMDs would vanish for zero orbital angular momentum of partons.
- Experimentally unexplored area proposed measurements with SoLID in JLab

C. Lorcé, B. Pasquini, X. Xiong, and F. Yuan, Phys. Rev. D 85, 114006

Adding transverse degree of freedom in position space

- In addiction to longitudinal momenta of partons, we consider also their intrinsic transverse positions b_x, b_y
- Described by impact-parameter distributions $f(x, \vec{b})$
- Impact parameter \vec{b} is a Fourier conjugate variable to $\vec{\Delta}$,

where $ec{\Delta}^2 = -t = -(P-P')^2$

Generalized parton distributions (GPD)

- Transformation $\vec{b}
 ightarrow \vec{\Delta}^2$ and non-zero ξ (longitudinal momentum fraction).
- Unification of the concepts of parton distributions and hadronic form factors.
- Special case for zero ξ , t "standard" collinear PDFs

$$H^{q}(x,\xi=0,t=0)=q(x)$$

$$ilde{H}^q(x,\xi=0,t=0)=\Delta q(x)$$

- Also related to elastic form factors $F_1(t), F_2(t)$ (integration over x).
- In the simplest approach, there are 6 GPDs.
- GPDs are also connected to the orbital angular momentum of partons.

	U	L	T
U	H		\mathcal{E}_T
L		\widetilde{H}	
T	E		H_T, \widetilde{H}_T

Measuring GPD's

- Invariant momentum transfer $\Delta^2 \ll \Delta^2$ at the proton vertex hard scale Q^2
- Suitable processes:
 - Deep virtual Compton scattering $(e + p \rightarrow e' + \gamma + p)$
 - Exclusive processes (e.g. vector meson production $\gamma + p \rightarrow VM + p$)
- Competing processes e.g. interference of DVCS with Bethe-Heitler
- Experiments: COMPASS, PANDA, JLab, EIC,

A. Accardi et al., Eur. Phys. J. A52, no. 9, 268 (2016)

Wigner distributions - "mother distribution function"

- Unifies both aspects momentum and position of the transverse structure of the proton \rightarrow phase space distribution of partons
- One can derive GPDs and TMDs from it.

Parton correlation function

2-parton correlation function for guarks

$$H(k, P, \Delta) = \frac{1}{(2\pi)^4} \int d^4 z e^{izk} \left\langle p\left(P + \frac{\Delta}{2}\right) \left| \bar{q}\left(-\frac{z}{2}\right) \Gamma q\left(\frac{z}{2}\right) \right| p\left(P - \frac{\Delta}{2}\right) \right\rangle$$

 \rightarrow matrix element of the guark field operator between the proton states

• In physical observables, $H(k, P, \Delta)$ is usually integrated over one or more components of k, or they are Fourier transformed to other variables

M. Diehl. arXiv:1512.01382

How to not get lost in all the distributions...

M. Diehl, arXiv:1512.01382

Conclusions

- Various observables and effects can be quantified using a specific parton distribution(s).
- The distributions can provide information on partonic structure of the proton from different views tomography of the proton structure
 - Momentum How do the partons move inside? How is the total momentum distributed among them?
 - Positions Where are the partons located?
 - Orbital movements Do they carry orbital angular momentum?
- Origin of the measured properties of nucleons from their partonic content?
- Wide experimental efforts and plans to untangle these puzzles
 - Past and current: CERN (EMC, COMPASS), JLab, BNL, DESY (H1, ZEUS, HERMES)
 - Future: EIC, FAIR (PANDA)

A. Accardi et al., Eur. Phys. J. A52, no. 9, 268 (2016)