Studium produkce c-kvarků v jetech

Jitka Mrázková

Fakulta jaderná a fyzikálně inženýrská, ČVUT

Zimní škola, 2020

③ Studium produkce c-kvarků v jetech

 kolimované spršky energetických hadronů, které vznikly fragmentací partonů

využití:

- testování QCD
- měření hmotností částic (top kvark, Higgs...)
- tomografie jaderné hmoty (jet quenching)

Jety [www.quantumdiaries.org]

Jety na partonové, částicové a detektorové úrovni, [www-d0.fnal.gov]

Jetové algoritmy

- jet definován pomocí jetových algoritmů
 - selekcní proces (výběr a klasifikace částic do jetů)
 - rekombinační schéma (způsob přiřazení kinematických veličin)

Ideální jetové algoritmy by měly splňovat následující podmínky:

- IRC bezpečnost
 - necitlivost na dodání měkkých částic
 - necitlivost vůči kolineárnímu vyzařování částic
- rovnocennost na partonové, částicové i detektorové úrovni
- maximálně nezávislý na vlastnostech detektoru
- efektivita a krátký výpočetní čas . . .

Jetové algoritmy

- (1) Kuželové algoritmy
 - například: Midpoint, SISCone
 - interpretace jetu jako kužele, seed částice

(2) Sekvenčně rekombinační algoritmy

- například: kt, Cambridge/Aachen a anti-kt algoritmus
- vychází z měření vzdáleností mezi částicemi

$$d_{ij} = \min(p_{T_i}^{2k}, p_{T_j}^{2k}) \frac{\Delta_{ij}^2}{R^2}, \qquad (1a)$$

$$d_{iB} = p_{T_i}^{2k}, \qquad (1b)$$

kde $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$, p_{Ti} , y_i a ϕ_i jsou příčná hybnost, rapidita a azimutální úhel částice *i*. *R* je rozlišovací parametr a *k* určuje typ algoritmu.

Chování jetových algoritmů na simulaci (Herwig) $\sim 10^4$ měkkých částic. JHEP 0804:063, 2008

Studium produkce c-kvarků v jetech

- způsob vzniku c-kvarků (pQCD)
 - přímá produkce

 $gg
ightarrow c ar c \qquad q ar q
ightarrow c ar c$ • procesy vyšších řádů (gluon splitting) g
ightarrow c ar c

- D^0 taggování
- ullet část hybnosti jetu, kterou nese D^0 mezon ve směru jeho osy

$$z_{||} = \frac{\vec{p}_{\text{jet}} \cdot \vec{p}_{\text{D}}}{\vec{p}_{\text{jet}} \cdot \vec{p}_{\text{jet}}},$$
(2)

kde \vec{p}_{D} je hybnost D mezonu.

Produkce c-jetů v pp srážkách na ALICI

- Měření produkce c-jetů taggovaných D⁰ mezonem v pp srážkách při $\sqrt{s} = 7$ TeV (ALICE), [JHEP 1908 (2019) 133]
- Volba D⁰ mezonu
 - $D^0 \to K^-\pi^+$ s větvícím poměrem $(3.89\pm 0.04)\%$
 - $3 < p_{\rm T,D} < 30 {\rm ~GeV/c}$
- Rekonstrukce jetu a D^0 taggování
 - track-based jety
 - anti- k_t algoritmus, R = 0.4
 - vybrané jety: $5 < p_{\mathrm{T,jet}}^{\mathrm{ch}} < 30$ GeV/c a $|\eta_{\mathrm{jet}}| < 0.5$

Produkce c-jetů v pp srážkách na ALICI

• Čistý výtěžek D⁰ – taggovaných jetů

lnvariantní hmotnostní spektrum jetů taggovaných D⁰ mezonem pro $5 < p_{\rm T,jet}^{\rm ch} < 30~{\rm GeV/c}$ (vlevo a uprostřed) a $15 < p_{\rm T,jet}^{\rm ch} < 30~{\rm GeV/c}$ (vpravo). JHEP 1908 (2019) 133

Korekce experimentálních dat

• p_T – diferenciální účinný průřez c-jetů taggovaných D^0 mezonem:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T,jet}}^{\mathrm{ch}}\mathrm{d}\eta_{\mathrm{jet}}}(p_{\mathrm{T,jet}}^{\mathrm{ch}}) = \frac{1}{\mathcal{L}_{\mathrm{int}}} \frac{1}{\mathrm{BR}} \frac{N(p_{\mathrm{T,jet}}^{\mathrm{ch}})}{\Delta\eta_{\mathrm{jet}}\Delta p_{\mathrm{T,jet}}^{\mathrm{ch}}},\tag{3}$$

kde $N(p_{T,jet}^{ch})$ je změřený výtěžek na každý bin $p_{T,jet}^{ch}$ s korekcemi. $\Delta p_{T,jet}^{ch}$ je šířka binů; $\Delta \eta_{jet} = 1$ je akceptance.

- 1) rekonstrukční efektivita
- 2) odečtení podílu b-jetů (feed-down)
- 3) dekonvoluce
- 4) systematické chyby

Korekce experimentálních dat

1) rekonstrukční efektivita

Akceptance × efektivita rekonstrukce D⁰ – taggovaných jetů přímo vzniklých D⁰ mezonů pro $5 < p_{\rm T,jet}^{\rm ch} < 15~{\rm GeV/c}$ a pro $15 < p_{\rm T,jet}^{\rm ch} < 30~{\rm GeV/c}$. JHEP 1908 (2019) 133

Korekce experimentálních dat

2) odečtení podílu b-jetů (feed-down)

Podíl b-hadronových jetů (nepřímo vzniklé D⁰ mezony) JHEP 1908 (2019) 133

Korigovaná spektra D^0 mezonů v jetech (p_T)

p_T – diferenciální účinný průřez D⁰ – taggovaných jetů (vlevo) v poměru s inkluzivním jetovým účinným průřezem (vpravo) v pp srážkách při $\sqrt{s} = 7$ TeV, srovnání s MC generátory. JHEP 1908 (2019) 133

Korigovaná spektra D 0 mezonů v jetech ($z_{||}^{ m ch}$)

 $z_{||}^{\rm ch}$ - diferenciální účinný průřez D⁰-taggovaných jetů pro intervaly $5 < p_{\rm T,jet}^{\rm ch} < 15~{\rm GeV/c}$ (vlevo) a $15 < p_{\rm T,jet}^{\rm ch} < 30~{\rm GeV/c}$ (vpravo) v pp srážkách při $\sqrt{s} = 7~{\rm TeV}$, srovnání s MC generátory. JHEP 1908 (2019) 133

Závěr

- výsledky experimentu (ALICE)
 - c-jety taggované D 0 mezonem v pp srážkách při $\sqrt{s}=7~{
 m TeV}$
 - v rozsahu $5 < p_{\rm T,jet}^{\rm ch} < 30~{\rm GeV/c}$
 - ullet analogicky provedena analýza v závislosti na $z^{
 m ch}_{||}$
 - srovnání se simulacemi (PYTHIA, Herwig, POWHEG)
 - souhlasí s pQCD
- cíl mojí práce:
 - rekonstruovat D-taggované jety pomocí anti- k_t algoritmu
 - získat jejich nekorigovaná spektra
 - experiment STAR (pp nebo Au+Au srážky, $\sqrt{s_{NN}} = 200$ GeV)

Seznam použité literatury

- Acharya, S. et al. "Measurement of the Production of Charm Jets Tagged with D⁰ Mesons in pp Collisions at √s = 7 TeV." Journal of High Energy Physics 2019.8 (2019): n. pag. Crossref. Web.
- Cacciari, Matteo, Gavin P Salam, and Gregory Soyez. "The Anti-Ktjet Clustering Algorithm." Journal of High Energy Physics 2008.04 (2008): 063–063. Crossref. Web.
- Sourav SarkarHelmut SatzBikash Sinha: "The Physics of the Quark-Gluon Plasma (Introductory lectures)" (2010)
- Obr.: Sketch of the evolution from the hard-scatter parton to a jet in the calorimeter, upraveno [online, 20.12.2019] https://www-d0.fnal.gov/phys_id/jes/public/plots_v7.1/
- Obr.: Jety, upraveno [online, 20.12.2019] https://www.quantumdiaries.org/wp-content/uploads/2011/ 04/clustering.png

Děkuji za pozornost