Heavy-ion collisions and Λ hyperon polarization

Bachelor's thesis

Author: Ondřej Lomický Supervisor: doc. Mgr. Jaroslav Bielčík, Ph.D. Advisor: Dr. Barbara Trzeciak

> Workshop EJCF 2020 Bílý Potok (u Frýdlantu)

Outline

- Heavy-ion collisions
 - QCD phase diagram
 - Heavy-ion collision
 - Modification factor R_{AA}
 - Jet quenching
- Λ hyperon polarization

QCD phase diagram

- Critical point for water: 374°C and 22.09 MPa
- Description of behaviour of matter at different conditions
- Baryo-chemical potential μ_B the energy to increase the baryon quantum number
- Still not sufficiently experimentally explored

Heavy-ion collision

- Pre-equilibrium $t\lessapprox 1~{\rm fm/c}$
- The QGP can be created due to high energy density
- Critical temperature $T_c \approx (150 - 170) \text{ MeV}$
- Freeze-out quarks are combined back into hadrons, several species
- After kinetic freeze-out, created particles are detected

Fig.: Evolution of a central heavy ion collision in a Minkowski-like plane. [3]

Fig.: R_{AA} for π^0 in d+Au and Au + Au collisions [4]

• Medium effects can modify scaling of the yield high p_T particles

$$R_{AA} = \frac{1}{\left\langle N_{coll}^{AA} \right\rangle} \frac{\frac{\mathrm{d}^2 N^{AA}}{\mathrm{d} p_T \mathrm{d} \eta}}{\frac{\mathrm{d}^2 N^{PP}}{\mathrm{d} p_T \mathrm{d} \eta}}$$

- $R_{AA} = 1$ no medium effect
- $\pi^0 \ (p_T \ge 2\text{-}3 \text{ GeV})$ are produced from hard scattering of partons

Jet quenching

Fig.: Jet and away-side jet [5]

- Jets particles having small relative distance in momentum space
- Away-side jets jets in opposite hemisphere
- Di-jet events away-side jet appears around $\Delta \phi = \pi$
- Au+Au collisions away-side jet is suppressed
- Jet quenching jet absorbed in dense medium

Λ hyperon

- Discovered in 1950
- Mean lifetime: $(2.632 \pm 0.020) \times 10^{-10}$ s
- \bullet Rest mass: (1115.683 \pm 0.006) $\rm MeV/c^2$
- Neutral electric charge
- Isospin I = 0 and $J^P = \frac{1}{2}^+$
- $\overline{\Lambda}$ is consists of $\overline{u}, \overline{d}, \overline{s}$
- Decay channels:

$Mode_{\Lambda}$	$Mode_{\overline{\Lambda}}$	Fraction (Γ_i/Γ)
$p + \pi^-$	$\overline{p} + \pi^+$	$(63.9 \pm 0.5) \%$
$n+\pi^0$	$\overline{n} + \pi^0$	$(35.8 \pm 0.5) \%$
$n+\gamma$	$\overline{n} + \gamma$	$(1.75 \pm 0.15) \times 10^{-4} \%$
Tab.: Λ and $\overline{\Lambda}$ decay modes [6]		

7

Data analysis at STAR

Fig.: The STAR detector system. [7]

TPC - identification based on the ionization energy loss
TOF - timing resolution is ~ 100 ps.

Detection of Λ hyperon

- Daughter $p(\overline{p})$ and $\pi^{-}(\pi^{+})$ are identified by dE/dx information
- They point away from the primary vertex

Polarization of Λ hyperon

- Polarized particle spin is aligned with a certain direction (vorticity)
- $\Lambda(\overline{\Lambda})$ is "self-analyzing"
- Vorticity is parallel to angular momentum \hat{J}_{sys}
- $\bar{p}_{p(\pi)}^*$ proton (pion) momentum \vec{S}_{Λ}^* - polarization vector in the hyperon rest frame

Fig.: Daughter proton [9]

• P_H polarization projected onto global angular momentum

 $P_H \equiv \frac{8}{\pi \alpha_H} \frac{\left\langle \sin\left(\Psi_1 - \phi_p^*\right) \right\rangle}{\operatorname{Res}(\Psi_1)}$

 Ψ₁ - azimuthal angle of the angular momentum of first-order event plane φ^{*}_p - azimuthal angle of p momentum in the Λ frame Res(Ψ₁) - resolution of the Ψ₁

•
$$\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.642 \pm 0.013$$

Fig.: The global polarization of Λ and $\overline{\Lambda}$ [8]

- The QGP is still not thoroughly explored
- R_{AA} and jet quenching can reveal the QGP
- The QGP is the hottest, the least viscous and the most vortical fluid
- Important for studies of chiral symmetry restoration

- Physics Soup. (2012). phase diagrams Physics Soup. [online] Available at: https://physicssoup.wordpress.com/tag/phase-diagrams/ [Accessed 12 Jan. 2020].
- [2] Ncatlab.org. (2019). quark-gluon plasma in nLab. [online] Available at: https://ncatlab.org/nlab/show/quark-gluon+plasma [Accessed 12 Jan. 2020].
- [3] Ars.els-cdn.com. (2019). [online] Available at: https://ars.els-cdn.com/content/image/1-s2.0-S0375947419300405-gr007.jpg [Accessed 12 Jan. 2020].
- [4] Anon, (2003). [online] Available at: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.91.072303
 [Accessed 12 Jan. 2020].
- [5] InSPIRE, (2009). [online] Available at: http://inspirehep.net/record/815778/plots [Accessed 12 Jan. 2020].

- [6] Pdglive.lbl.gov. (2019). pdgLive. [online] Available at: http://pdglive.lbl.gov/Particle.action?init=0&node=S018&home=BXXX020 [Accessed 12 Jan. 2020].
- [7] Arxiv.org. (2017). [online] Available at: https://arxiv.org/pdf/1701.06657.pdf [Accessed 12 Jan. 2020].
- [8] Anon, (2018). Researchgate. [online] Available at: https://www.researchgate.net/publication/325118641_Global_polarization_ [Accessed 12 Jan. 2020].
- [9] Google Docs. (2019). LisaQM2019.pdf. [online] Available at: https://drive.google.com/file/d/1ASuo0Ih7shaLKIf2CVmzuVVYChiF50qK/v [Accessed 12 Jan. 2020].