B-DEPENDENT BK IN ALL ITS BEAUTY

Marek Matas (matas.marekl@gmail.com)
Czech Technical University in Prague,
Faculty of Nuclear Sciences and Physical Engineering, Department of Physics

OUTLINE

I. Deep inelastic scattering
II. What is BK equation and the dipole model
III. Saturation and its role in nucleons
IV. Impact parameter dependence

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING

The electron-proton collisions are considered to happen as:
I. The incoming electron emits a virtual photon.
2. The virtual photon interacts with the target proton
3. The proton breaks apart.

HOW DOES A PHOTON INTERACT WITH A PROTON?

DIPOLE MODEL

The photon must interact strongly with the target proton, how is that possible?
I. The virtual photon first fluctuates into a quark-antiquark pair
2. Then it exchanges an object with vacuum quantum numbers with the proton

DIPOLE MODEL

The probability of a photon splitting to a quark-antiquark pair is computed from QFT.

DIPOLE MODEL

To compute the cross section of the interaction, we are missing the $\sigma_{\text {dipole-proton }}$

HOW DO WE OBTAIN THE DIPOLE-PROTON CROSS SECTION?

MV MODEL

You approximate the target as a dense gluonic field, that interacts with the passing quark strongly.

$$
S \sim \int d x_{T} P \exp \left[i g \int d x^{+} A^{c-}\left(x^{+}, x_{T}\right) t^{c}\right]_{a b} \quad\left\{\begin{array}{lll}
2 & & 2 \\
2 & \cdots & 2
\end{array}\right.
$$

This object is called a Wilson line, it works under the approximation that no momentum is exchanged and can be viewed as a rotation in the color space.

MV MODEL

- You can use two Wilson lines to compute, what effect will there be on a bare dipole passing through such medium.
- They find, that the scattering amplitude then is proportional to: $\mathrm{N} \sim \exp \left[-\frac{r_{T}^{2} Q_{S}^{2}}{4} \log \frac{1}{r_{T} \Lambda}\right]$

- Where r_{T} is the transversal size of the dipole, Q_{S} is called the saturation scale (a parameter, that is fit to data) and Λ is the QCD scale.

IS THE DIPOLE ALWAYS BARE?

BK EQUATION

Boost to a frame, where dipole is at rest

BK EQUATION

BK EQUATION

BK EQUATION

After some time, the initial dipole becomes dressed.

BK EQUATION

Mathematically, this realates to:

$$
\frac{\partial N(r, Y)}{\partial \ln Y}=\int d \vec{r}_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)\left(N\left(\vec{r}_{1}, Y\right)+N\left(\vec{r}_{2}, Y\right)-N(\vec{r}, Y)-N\left(\vec{r}_{1}, Y\right) N\left(\vec{r}_{2}, Y\right)\right)
$$

BK EQUATION

Mathematically, this realates to:

$$
\frac{\partial N(r, Y)}{\partial \ln Y}=\int d \vec{r}_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)\left(N\left(\vec{r}_{1}, Y\right)+N\left(\vec{r}_{2}, Y\right)-N(\vec{r}, Y)-N\left(\vec{r}_{1}, Y\right) N\left(\vec{r}_{2}, Y\right)\right)
$$

This is the change of the scattering amplitude, when we add a bit of energy into the system.

BK EQUATION

Mathematically, this realates to:

$$
\frac{\partial N(r, Y)}{\partial \ln Y}=\int d{ }_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)\left(1\left(\vec{r}_{1}, Y\right)+N\left(\vec{r}_{2}, Y\right)-N(\vec{r}, Y)-N\left(\vec{r}_{1}, Y\right) N\left(\vec{r}_{2}, Y\right)\right)
$$

Kernel is computed from QCD to reflect the probability of the gluon emission.

BK EQUATION

Mathematically, this realates to:

$$
\frac{\partial N(r, Y)}{\partial \ln Y}=\int d \vec{r}_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\left(N\left(\vec{r}_{1}, Y\right)+N\left(\vec{r}_{2}, Y\right)-N(\vec{r}, Y)-N\left(\vec{r}_{1}, Y\right) N\left(\vec{r}_{2}, Y\right)\right)\right.
$$

Dipole-proton scattering amplitudes.

WHAT DOES THE BK TELL US ABOUT THE PROTON?

At large values of x (carried momentum fraction), the proton is made of valence quarks

(1)

At large values of x (carried momentum fraction), the proton is made of valence quarks

(2)

$$
x \sim \frac{1}{\sqrt{S}}
$$

Increasing the energy of the collision means reaching lower values of x.

Energy of the collision

Energy of the collision

Energy of the collision

Energy of the collision

What is happening here?
(2)

(3)
(4)

Energy of the collision

SATURATION

- If gluon numbers only grow toward region of low-x, the gluon distribution would diverge.
- This growth is governed by the BFKL equation.

$$
\frac{\partial N(r, Y)}{\partial \ln Y}=\int d \vec{r}_{1} K\left(\vec{r}, \vec{r}_{1}, \vec{r}_{2}\right)\left(N\left(\vec{r}_{1}, Y\right)+N\left(\vec{r}_{2}, Y\right)-N(\vec{r}, Y)-N\left(\vec{r}_{1}, Y\right)\right)
$$

- The rate of this growth is unphysical and gives us too high cross sections.
- Additional effects need to be taken into account!

SATURATION

- BFKL equation includes only the gluon radiation effects.
- Other non-linear evolution equation such as the BK equation takes gluon recombination into account.
- This slows down the evolution and tames the unphysical divergences.

SATURATION

- BFKL equation includes only the gluon radiation effects.
- Other non-linear evolution equation such as the BK equation takes gluon recombination into account.
- This slows down the evolution and tames the unphysical divergences.

Dipole Cross-Section:

What is happening here?
(1)

(2)

Energy of the collision

Energy of the collision

IMPACT-PARAMETER DEPENDENCE OF THE BK EQUATION

b-BK EQUATION

Impact parameter is the distance of an interacting dipole from the center of the target.

b-BK EQUATION

The Balitsky-Kovchegov equation describes the evolution of a color dipole scattering amplitude $N(\vec{r}, \vec{b}, Y)$ in rapidity

$$
\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial Y}=\int d \overrightarrow{r_{1}} K\left(r, r_{1}, r_{2}\right)\left(N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right)+N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)-N(\vec{r} \mid \vec{b}, Y)-N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right) N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)\right)
$$

given by $Y=\ln \frac{x_{0}}{x}$.
Impact parameter dependence enters the equation.

b-BK EQUATION

The Balitsky-Kovchegov equation describes the evolution of a color dipole scattering amplitude $N(\vec{r}, \vec{b}, Y)$ in rapidity

$$
\left.\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial Y}=\int d r K\left(r, r_{1}, r_{2}\right) N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right)+N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)-N(\vec{r}, \vec{b}, Y)-N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right) N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)\right)
$$

given by $Y=\ln \frac{x_{0}}{x}$.

b-BK EQUATION

The Balitsky-Kovchegov equation describes the evolution of a color dipole scattering amplitude $N(\vec{r}, \vec{b}, Y)$ in rapidity

$$
\left.\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial Y}=\int d r \vec{r}\left(r, r_{1}, r_{2}\right) N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right)+N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)-N(\vec{r}, \vec{b}, Y)-N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right) N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)\right)
$$

given by $Y=\ln \frac{x_{0}}{x}$.

Since the process of gluon emission can be computed under different approximations, we have a number of kernels derived such as

Running coupling kernel:

$$
K^{r u n}\left(r, r_{1}, r_{2}\right)=\frac{N_{c} \alpha_{s}\left(r^{2}\right)}{2 \pi^{2}}\left(\frac{r^{2}}{r_{1}^{2} r_{2}^{2}}+\frac{1}{r_{1}^{2}}\left(\frac{\alpha_{s}\left(r_{1}^{2}\right)}{\alpha_{s}\left(r_{2}^{2}\right)}-1\right)+\frac{1}{r_{2}^{2}}\left(\frac{\alpha_{s}\left(r_{2}^{2}\right)}{\alpha_{s}\left(r_{1}^{2}\right)}-1\right)\right)
$$

Collinearly improved kernel:

$$
K^{c o l}\left(r, r_{1}, r_{2}\right)=\frac{\bar{\alpha}_{s}}{2 \pi} \frac{r^{2}}{r_{1}^{2} r_{2}^{2}}\left[\frac{r^{2}}{\min \left(r_{1}^{2}, r_{2}^{2}\right)}\right]^{ \pm \bar{\alpha}_{s} A_{1}} K_{D L A}\left(\sqrt{L_{r_{1} r} L_{r_{2} r}}\right)
$$

b-BK EQUATION

For solving this equation numerically, we choose an initial condition
$N(r, b, Y=0)=1-\exp \left(-\frac{1}{2} \frac{Q_{s}^{2}}{4} r^{2} T\left(b_{q_{1}}, b_{q_{2}}\right)\right), \quad$ where $\quad T\left(b_{q_{1}}, b_{q_{2}}\right)=\left[\exp \left(-\frac{b_{q_{1}}^{2}}{2 B}\right)+\exp \left(-\frac{b_{q_{2}}^{2}}{2 B}\right)\right]$.
There are two free parameters; saturation scale $Q_{s}^{2}=0.49 \mathrm{GeV}^{2}$ and variance of the profile distribution $B_{G}=3.22 \mathrm{GeV}^{-2}$.

- The r behavior mimics that of the GBW model.
- The b behavior exhibits the exponential fall-off calculated for the individual quarks.
q

THE PROBLEM OF COULOMB TAILS

THE PROBLEM

If we start with an exponentially falling initial condition and the usual running coupling kernel.

THE PROBLEM

If we start with an exponentially falling initial condition and the usual running coupling kernel.

THE PROBLEM

If we start with an exponentially falling initial condition and the usual running coupling kernel.

This growth would then violate the Martin-Froisart bound.

HIGH-b SUPPRESSION

The kernel itself does not depend on b. We can however tame the growth in b by suppressing evolution at big sizes of daughter dipoles.

Why?

HIGH-b SUPPRESSION

For high-b, the scattering amplitude is exponentially suppressed at the initial condition.

$$
\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial Y}=\int d \overrightarrow{r_{1}} K\left(r, r_{1}, r_{2}\right)\left(N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right)+N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)-N(\vec{r}, \vec{b}, Y)-N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right) N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)\right)
$$

HIGH-b SUPPRESSION

For high-b, the scattering amplitude is exponentially suppressed at the initial condition.

$$
\frac{\partial N(\vec{r}, \vec{b}, Y)}{\partial Y}=\int \overrightarrow{r_{1}} K\left(r, r_{1}, r_{2}\right)\left(N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right)+N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)-N(\vec{r}, \vec{b}, Y)-N\left(\overrightarrow{r_{1}}, \overrightarrow{b_{1}}, Y\right) N\left(\overrightarrow{r_{2}}, \overrightarrow{b_{2}}, Y\right)\right)
$$

$\overrightarrow{r_{1}}$

HIGH-b SUPPRESSION

For high-b, the scattering amplitude is exponentially suppressed at the initial condition.

The only amplitudes that could be non-zero are those with small impact parameter.

These have $r_{l, 2} \sim 2 b$, which is large.

HIGH-b SUPPRESSION

For high-b, the scattering amplitude is exponentially suppressed at the initial condition.

T

Therefore if we suppress kernel at high r_{l} and r_{2}, we suppress the evolution at high- b and maintain the exponential falloff of the scattering amplitude.

HOW TO SUPPRESS LARGE DAUGHTER DIPOLES

KERNEL CUTOFF

One possible solution to this problem is that we can cut the kernel, so that dipoles, that are too big would not contribute to the evolution.

$$
\begin{aligned}
& \frac{\partial N(r, \vec{b}, Y)}{\partial Y}=\int d \overrightarrow{r_{1}} K^{r u n}\left(r, r_{1}, r_{2}\right) \Theta\left(\frac{1}{m^{2}}-r_{1}^{2}\right) \Theta\left(\frac{1}{m^{2}}-r_{2}^{2}\right) \\
& \quad\left(N\left(r_{1}, \overrightarrow{b_{1}}, Y\right)+N\left(r_{2}, \overrightarrow{b_{2}}, Y\right)-N(r, \vec{b}, Y)-N\left(r_{1}, \overrightarrow{b_{1}}, Y\right) N\left(r_{2}, \overrightarrow{b_{2}}, Y\right)\right)
\end{aligned}
$$

KERNEL CUTOFF

One possible solution to this problem is that we can cut the kernel, so that dipoles, that are too big would not contribute to the evolution.

$$
\begin{aligned}
& \frac{\partial N(r, \vec{b}, Y)}{\partial Y}=\int d \overrightarrow{r_{1}} K^{r u n}\left(r, r_{1}, r_{2}\right) \Theta\left(\frac{1}{m^{2}}-r_{1}^{2}\right) \Theta\left(\frac{1}{m^{2}}-r_{2}^{2}\right) \\
& \left(N\left(r_{1}, \overrightarrow{b_{1}}, Y\right)+N\left(r_{2}, \overrightarrow{b_{2}}, Y\right)-N(r, \vec{b}, \vec{y})-N\left(r_{1}, \overrightarrow{b_{1}}, Y\right) N\left(r_{2}, \overrightarrow{b_{2}}, Y\right)\right)
\end{aligned}
$$

Mass of the emitted gluon is a free parameter, that is fitted to data.

KERNEL CUTOFF

By imposing the cutoff of the kernel, we maintain the exponential falloff of the scattering amplitude.

However, as was shown in [Phys. Rev. D84(201 I)094022], we still cannot describe the data, since the cutoff is too strong and we need to impose new phenomenological constants to cure this.

KERNEL CUTOFF

The recently proposed collinearly improved kernel is by its nature suppressed at high $r_{l, 2}$ and does not require additional dimensional parameters.

$$
K^{c o l}\left(r, r_{1}, r_{2}\right)=\frac{\bar{\alpha}_{s}}{2 \pi} \frac{r^{2}}{r_{1}^{2} r_{2}^{2}}\left[\frac{r^{2}}{\min \left(r_{1}^{2}, r_{2}^{2}\right)}\right]^{ \pm \bar{\alpha}_{s} A_{1}} K_{D L A}\left(\sqrt{L_{r_{1} r} L_{r_{2} r}}\right)
$$

The collinearly improved kernel imposes a time ordering in the lifetime of the consequent dipoles.
It is a consequence of resumming collinear logarithms in the derivation of the kernel.

KERNEL CUTOFF

Here we compare the value of the collinearly improved kernel with the running coupling kernel versus r_{l}.

KERNEL CUTOFF

Here we compare the value of the collinearly improved kernel with the running coupling kernel versus r_{l}.
$10^{\circ} \xlongequal{\left|K_{c i} / K_{r c}\right| \text { for } \theta_{r r_{1}}=1.57[\mathrm{rad}] \text { and } r=1\left[\mathrm{GeV}^{-1}\right]}$
The suppression can be traced back to the fact that large daughter dipoles do not follow the time-ordering prescription built in when setting up the resummation that leads to the collinearly improved kernel.

They would live longer than the parent dipole.

KERNEL CUTOFF

Here we compare the value of the collinearly improved kernel with the running coupling kernel versus r_{l}.

J. Cepila, J. G. Contreras, M. Matas; Phys. Rev. D 99, 051502

COMPARISON TO DATA

RESULTS

RESULTS

RESULTS

CONCLUSIONS

- The BK equation is a crucial tool in our understanding of QCD and saturation physics
- The predictive power of the the impact-parameter dependent BK equation can be spoiled by the unphysical growth of the so-called Coulomb tails.
- These can be suppressed by suppressing the evolution for large daughter dipoles r_{1} and r_{2}.
- The collinearly improved kernel suppresses the Coulomb tails so that the b-dependent BK equation describes data over a large phase-space and various processes.
- We have currently published a paper with all details Phys. Rev. D I00, 0540I5.

THANK YOU FOR YOUR ATTENTION

BACKUP

KERNEL CUTOFF

The recently proposed collinearly improved kernel is by its nature suppressed at high $r_{l, 2}$ and does not require additional dimensional parameters.

$$
K^{c o l}\left(r, r_{1}, r_{2}\right)=\frac{\bar{\alpha}_{s}}{2 \pi} \frac{r^{2}}{r_{1}^{2} r_{2}^{2}}\left[\frac{r^{2}}{\min \left(r_{1}^{2}, r_{2}^{2}\right)}\right]^{ \pm \bar{\alpha}_{s} A_{1}} K_{D L A}\left(\sqrt{L_{r_{1} r} L_{r_{2} r}}\right)
$$

$$
\text { where } \quad K_{D L A}(\rho)=\frac{J_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right)}{\sqrt{\bar{\alpha}_{s} \rho}} \text { with } \quad L_{r_{i} r}=\ln \left(\frac{r_{i}^{2}}{r^{2}}\right)
$$

$\pm \bar{\alpha}_{s} A_{1}$ is positive when r is smaller than the daughter dipoles and negative otherwise and $A_{1}=11 / 12$

Running coupling is of the usual scheme for the BK computations as in [J. L.Albacete at al, Eur.Phys.J. C7I (201I) I705] at the minimal scale given by

$$
\bar{\alpha}_{s}=\alpha_{s} \frac{N_{c}}{\pi} \quad \alpha_{s}=\alpha_{s}\left(r_{\min }\right) \quad r_{\min }=\min \left(r_{1}, r_{2}, r\right) \quad \text { with } \mathrm{C}=9
$$

The factor in square brackets represents the contribution of single collinear logarithms and DLA term resums double collinear logarithms to all orders.

RESULTS

D. Bendova, J. Cepila, J. G. Contreras, M. Matas; Phys. Rev. D I00, 054015

