
A fixed-target programme at the LHC for heavy-ion, hadron, spin and astroparticle physics

Barbara Trzeciak FJFI, ČVUT

Workshop EJČF Bílý Potok January 12-18, 2020

Outline

A high luminosity Fixed Target ExpeRiment at the LHC

- > Kinematic features and advantages
- Physics motivation
- > Technical implementations and luminosities with LHC beams
 - ALICE and LHCb
- Selection of physics opportunities and projected performances

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis (Orsay, IPN), D. Kikoła (Warsaw U. of Tech.), J.P. Lansberg, L. Massacrier (Orsay, IPN), M.G. Echevarria (INFN, Pavia), A. Kusina (Cracow, INP), I. Schienbein (LPSC, Grenoble), J. Seixas (Lisbon, IST & LIP, Lisbon), H.S. Shao (Paris, LPTHE), A. Signori (Jefferson Lab), B. Trzeciak (Utrecht U.), S.J. Brodsky (SLAC), G. Cavoto (INFN, Rome & Rome U.), C. Da Silva (Los Alamos), F. Donato (Turin U. & INFN, Turin), E.G. Ferreiro (Santiago de Compostela U. & Santiago de Compostela U., IGFAE & Ecole Polytechnique), I. Hřivnáčová (Orsay, IPN), A. Klein (Los Alamos), A. Kurepin (Moscow, INR), C. Lorcé (Ecole Polytechnique, CPHT), F. Lyonnet (Southern Methodist U.), Y. Makdisi (BNL, C-A Dept.), S. Porteboeuf (Clermont-Ferrand U.), C. Quintans (LIP, Lisbon), A. Rakotozafindrabe (IRFU, Saclay, DPHN), P. Robbe (Orsay, LAL), W. Scandale (CERN), N. Topilskaya (Moscow, INR), A. Uras (Lyon, IPN), J. Wagner (NCBJ, Warsaw), N. Yamanaka (Orsay, IPN), Z. Yang (Tsinghua U., Beijing), A. Zelenski (BNL, C-A Dept.) *Hide*

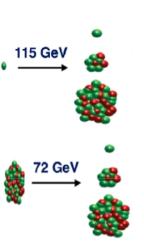
AFTER@LHC Study group: http://after.in2p3.fr/after Jul 2, 2018 - 102 pages

(2018-08-20) IFJPAN-IV-2018-11, JLAB-THY-18-2756, SLAC-PUB-17291 e-Print: <u>arXiv:1807.00603</u> [hep-ex] | <u>PDF</u> arXiv: 1807.00603 Submitted to Physics Report

B.Trzeciak, AFTER@LHC

Kinematic features

> Energy range


7 TeV proton beam on a fixed target

c.m.s. energy	: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

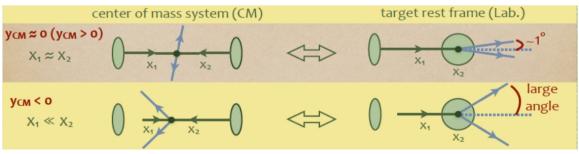
c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

• \sqrt{s} in-between SPS and top RHIC

Kinematic features

→ Energy range

7 TeV proton beam on a fixed target


c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:
	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

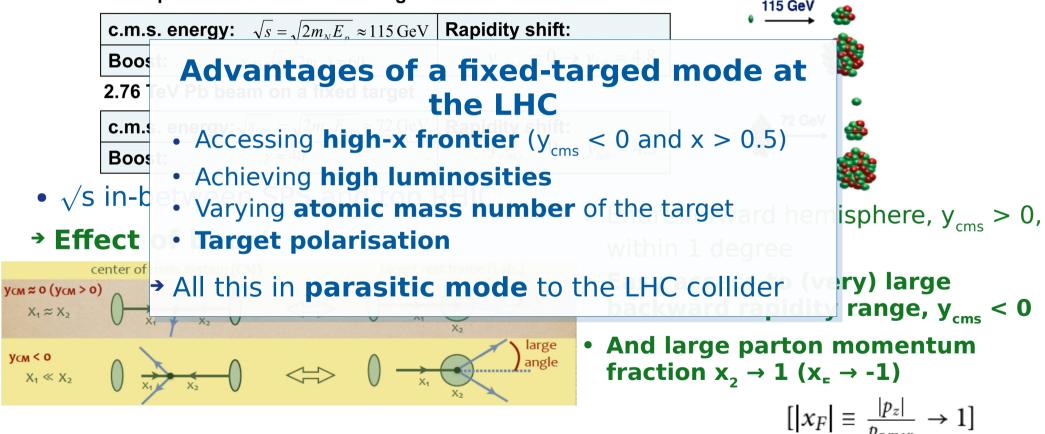
c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$	
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

- \sqrt{s} in-between SPS and top RHIC

Effect of boost

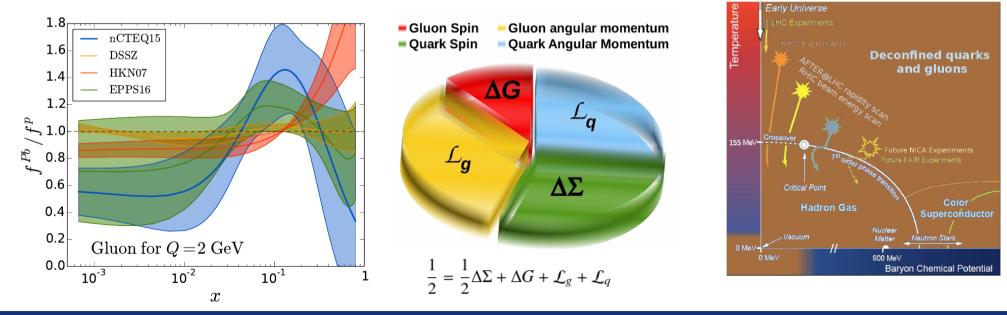
115 GeV

- Entire forward hemisphere, $y_{cms} > 0$, within 1 degree
- Easy access to (very) large backward rapidity range, y_{cms} < 0
- And large parton momentum fraction $x_2 \rightarrow 1 (x_F \rightarrow -1)$



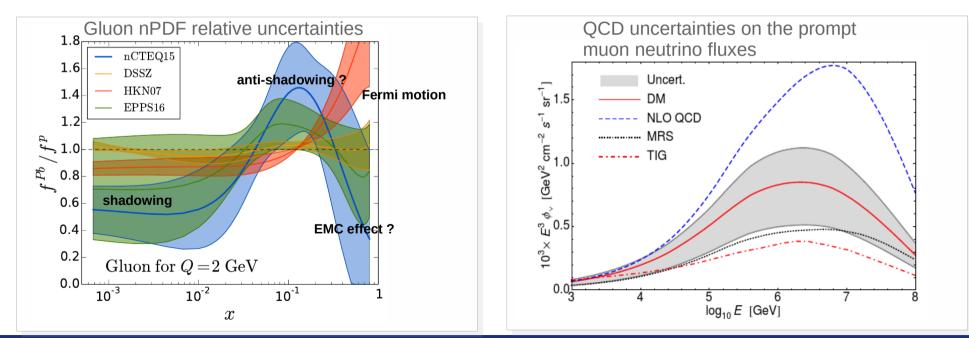
Kinematic features

AFTER

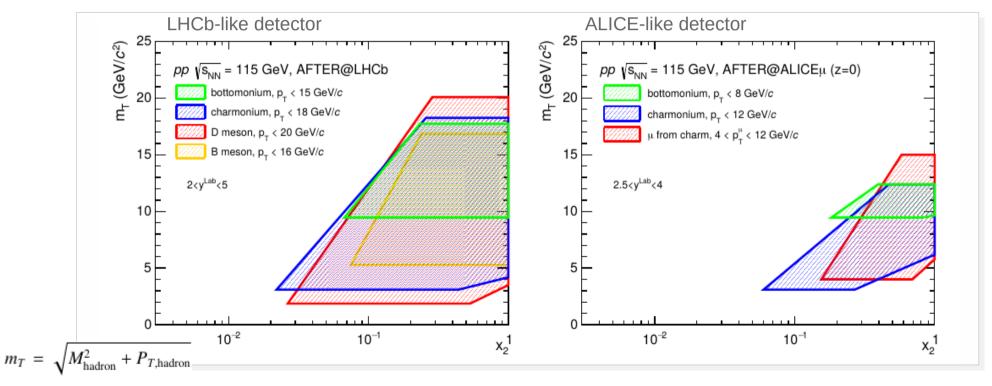


Physics motivations

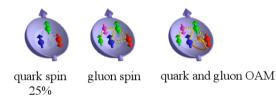
- Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics
- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- Studies of the quark-gluon plasma in heavy-ion collisions at a new energy domain down to the target-rapidity region



Physics case: high-x


- Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics
- Structure of nucleon and nuclei at high-x is poorly known (x>0.5), both at low and high scales
 - Origin of the nuclear EMC effect in nuclei ?
 - Non-perturbative source of charm or beauty in proton important for Ultra-High-Energy-Cosmic Rays (UHECR), high-energy neutrino in the PeV range

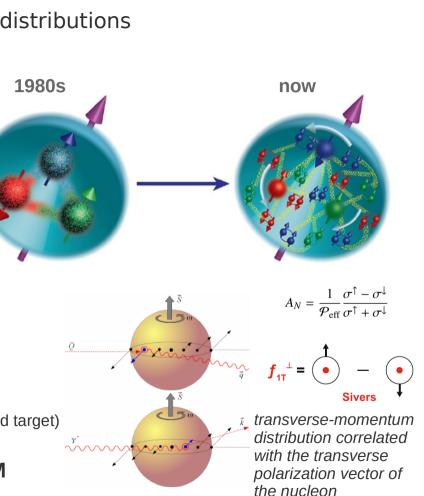
AFTER high-x kinematic reach


- Typical kinematical reach with heavy-hadron production at x_2 , proxy to the momentum fraction of the parton in the target, of a fixed-target mode of LHCb- or ALICE-like detectors
 - Gluon-sensitive probes:

Physics case: spin

- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- > 3D mapping of the proton momentum
- How quarks and gluons bind into a spin-1/2 object

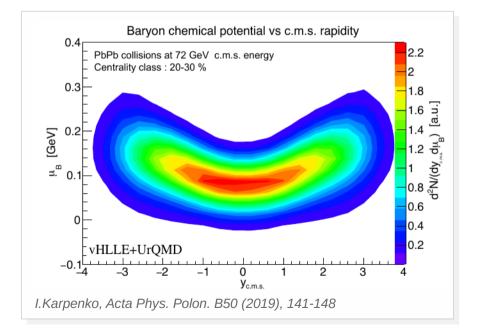
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

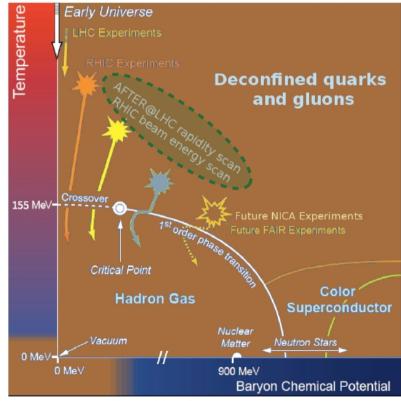


- quark/anti-quark: ~30% of proton longitudinal spin
- → gluons: even up to 40%
- Missing contribution to the proton spin from the transverse dynamics of quarks and gluons

gluon and quark Orbital Angular Momentum $\mathcal{L}_{g;q}$

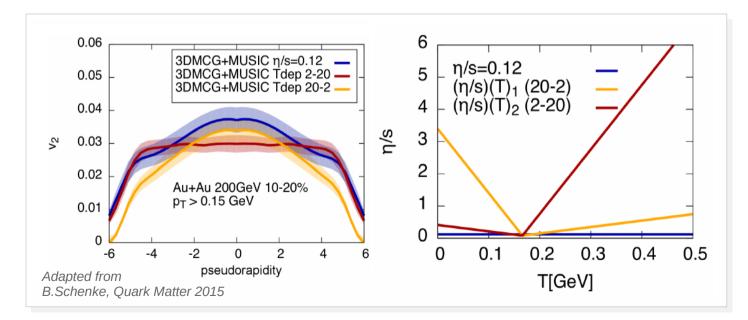
- Single Transverse Spin Asymmetries (with transversely polarised target)

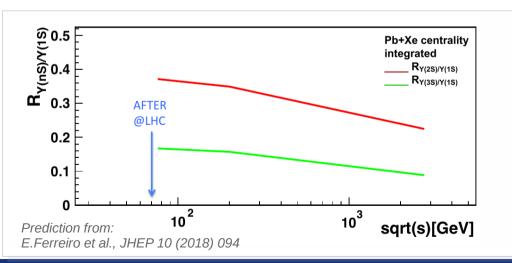

 → orbital motion of partons inside hadron: Sivers effect
- Non-zero quark/gluon Sivers functions → non-zero OAM



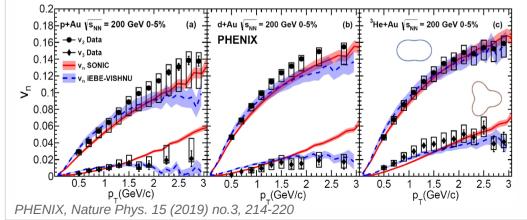
Physics case: QGP

- → Study of the quark-gluon plasma between SPS and top RHIC energies of √s_{NN} = 72 GeV over broad rapidity range
- > Complete studies as a function of rapidity, centrality and system size → scan in μ_B complementary to RHIC BES programme $\frac{2}{Early Universe}$




Physics case: QGP (1)

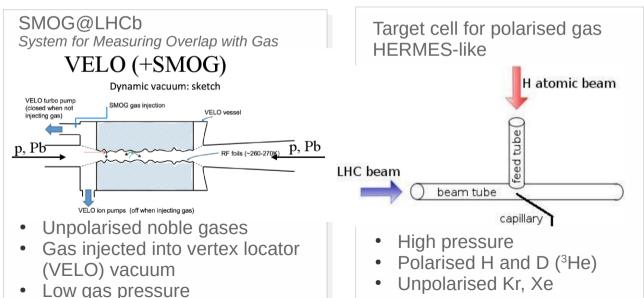
- → Study of the quark-gluon plasma between SPS and top RHIC energies of √s_{NN} = 72 GeV over broad rapidity range
- > Complete studies as a function of rapidity, centrality and system size \rightarrow scan in μ_{B}
- Explore the longitudinal expansion of the QGP
 - Particle yields and $v_n \rightarrow$ temperature dependence of the shear viscosity

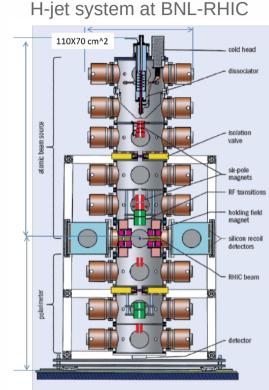

Physics case: QGP (2)

- AFTE
- → Study of the quark-gluon plasma between SPS and top RHIC energies of √s_{NN} = 72 GeV over broad rapidity range
- > Complete studies as a function of rapidity, centrality and system size \rightarrow scan in μ_{B}
- > Explore the longitudinal expansion of the QGP
 - Particle yields and $v_n \rightarrow$ temperature dependence of the shear viscosity
- Unique access to hard probes at this energy domain
 - Quarkonium suppression in QGP \rightarrow thermodynamic properties of the QGP
 - D meson R_{AA} and $v_2 \rightarrow$ heavy-flavour energy loss, transport properties of the QGP

Physics case: QGP (3)

- → Study of the **quark-gluon plasma** between SPS and top RHIC energies of $\sqrt{s_{NN}} = 72$ GeV over broad rapidity range
- > Complete studies as a function of rapidity, centrality and system size \rightarrow scan in μ_{B}
- > Explore the longitudinal expansion of the QGP
 - Particle yields and $v_n \rightarrow$ temperature dependence of the shear viscosity
- Unique access to hard probes at this energy domain
 - Quarkonium suppression in QGP \rightarrow thermodynamic properties of the QGP
 - D meson R_{AA} and $v_2 \rightarrow$ heavy-flavour energy loss, transport properties of the QGP
- → p-A, lighter ions and high-multiplicity pp collisions
 - Test of collectivity in small systems
 - factorization of CNM effects
 from pA to AB → Drell-Yan
 (insensitive to QGP formation)




Possible implementations

Internal gas target

- Full LHC beam flux on internal gas target
- Use of an existing LHC experiment
- · Feasibility demonstrated by SMOG at LHCb
- Storage cell target (HERMES-like) or gas-jet system (RHIC H-jet polarimeter) for (un)polarised gases

- Measures proton beam polarisation at RHIC
- Polarised gas: H, D and He possible

WEJCF, Jan 2020

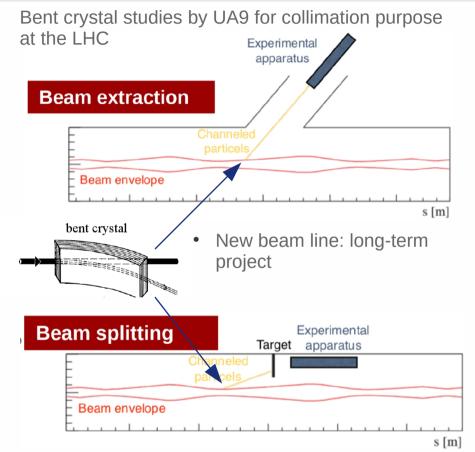
B.Trzeciak, AFTER@LHC

Possible implementations (2)

> Internal gas target

- Full LHC beam flux on internal gas target
- Use of an existing LHC experiment
- · Feasibility demonstrated by SMOG at LHCb
- Storage cell target (HERMES-like) or gas-jet system (RHIC H-jet polarimeter) for (un)polarised gases

Internal wire/foil target


- Beam halo recycled directly on internal solid target
- As HERA-B and STAR, heavy-nucleus targets

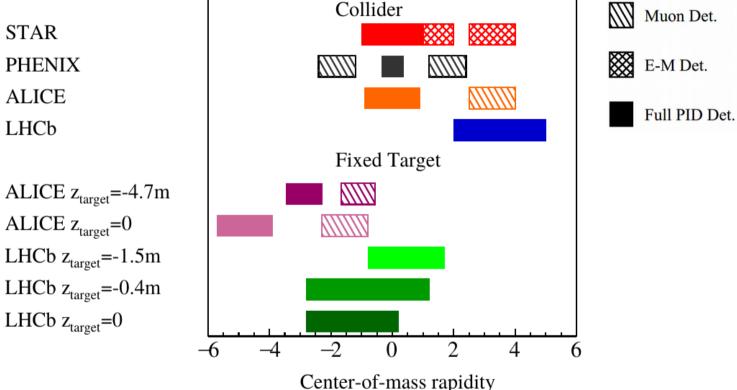
Beam line extracted with a bent crystal

- Beam halo deflected onto an external target
- Thick (un)polarised and cryogenic polarised targets
- Considerable amount of civil engineering

Beam "split" by a bent crystal

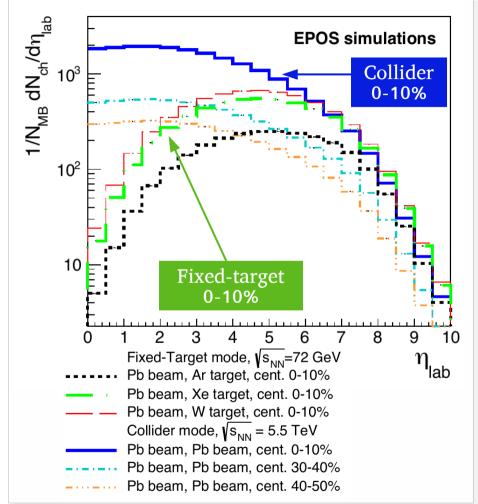
- Beam halo deflected onto an internal solid or gas target
- Inside beam pipe of an existing LHC experiment

 Beam splitting: crystal located ~100m downstream of the target


Acceptance in centre-of-mass y

With7 TeV proton beam

 $\Delta v = 4.8$


STAR PHENIX ALICE LHCb

→ ALICE: central barrel: very backward $y(x_2 \rightarrow 1)$, Muon Spectrometer: more central y→ LHCb: central and half of the backward y_{cms} < 0

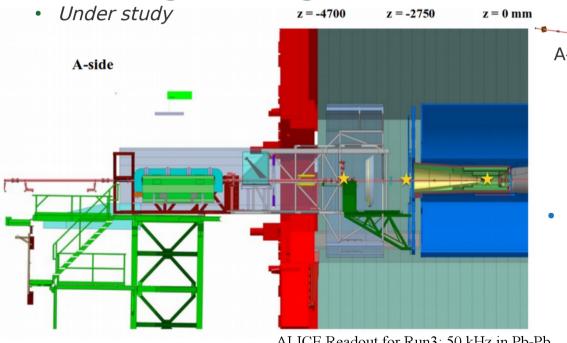
Detector requirements

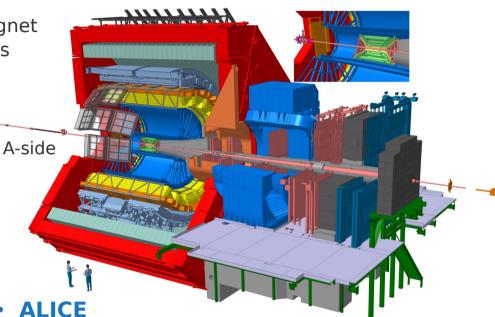
Wide rapidity coverage of backward and mi-rapidity in Y_{c.m.s.}

p beam: $y_{lab.}$ range 0 – 4.8

Pb beam: $y_{lab.}$ range 0 – 4.2

- → With (low p_T) PID and vertexing capabilities
- Heavy-ion: good performance in highmultiplicity events, up to 600 – 700 charged tracks per unit of rapidity at η_{lab}~4.2
- Readout rate similar to LHC collider: up to 36 MHz in pp, 300 MHz in pXe, 190 kHz in PbXe
- Polarised target requires space e.g. for pumping system


Possible implementation: ALICE


Beam splitting with bent crystal + internal target

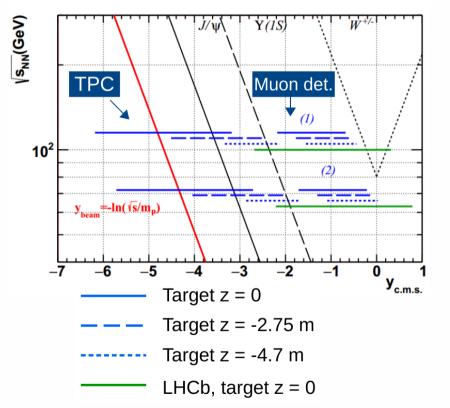
- Crystal installed prior of the IP2 (ALICE), at ~70m
- Deviates the beam halo onto a solid target in L3 magnet
- Target z position < 4.8m, \sim 1.3 cm from the beam axis

Gas storage cell target

ALICE Readout for Run3: 50 kHz in Pb-Pb and 200kHz-1 MHz in p-p/p-A

- wide rapidity coverage
- excellent PID capabilities in the central barrel
- experiment designed to cope with high-multiplicity events
- reconstruction of charged particles down to $p_{\tau} \sim 0.15$ GeV/c at mid-rapidity

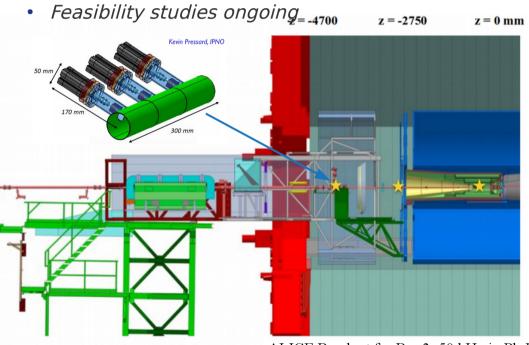
Possible implementation: ALICE

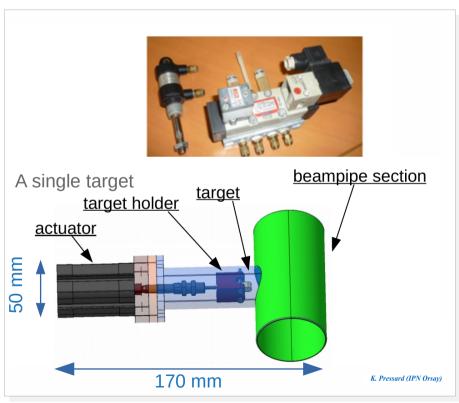


Beam splitting with bent crystal + internal target

- Crystal installed prior of the IP2 (ALICE), at ~70m
- Deviates the beam halo onto a solid target in L3 magnet
- Target z position < 4.8m, \sim 1.3 cm from the beam axis

Gas storage cell target

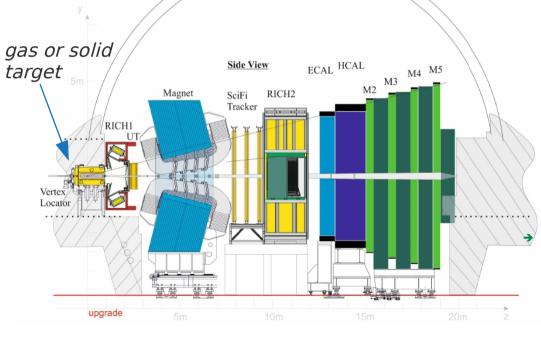


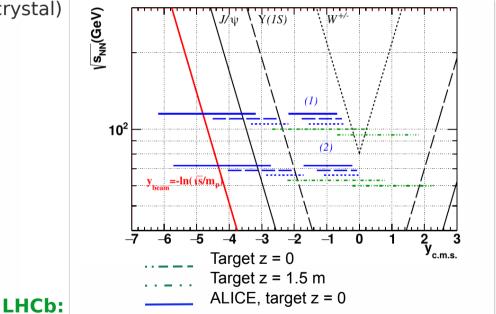

Possible implementation: ALICE (2)

Beam splitting with bent crystal + internal target

- Crystal installed prior of the IP2, deviates the beam halo onto a solid target
- Pneumatic motion system with two position IN and OUT of the beam pipe
- Various target type: Be, Ca, C, Ti, Ni, Cu, Os, Ir, W
- Target length from ${\sim}100\mu m$ to 5 mm

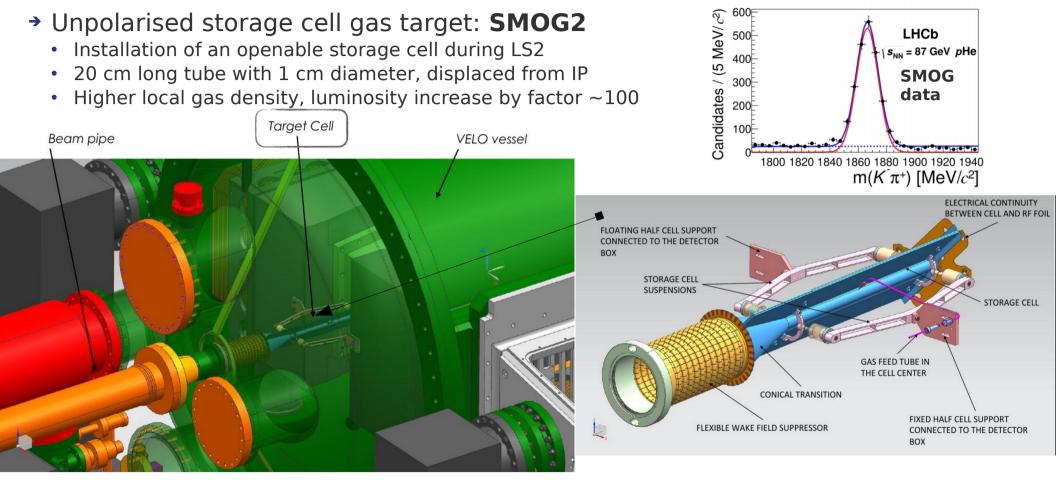
ALICE Readout for Run3: 50 kHz in Pb-Pb and 200kHz-1 MHz in p-p/p-A




WEJCF, Jan 2020

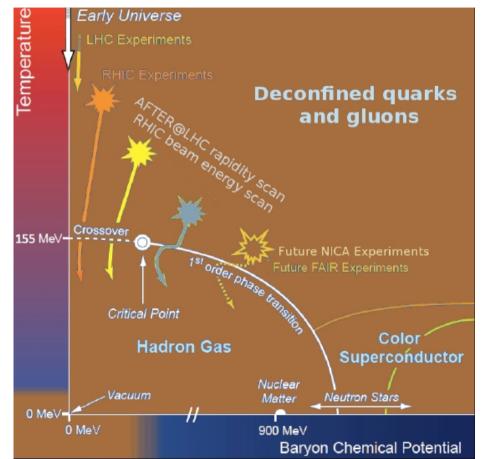
Possible implementation: LHCb

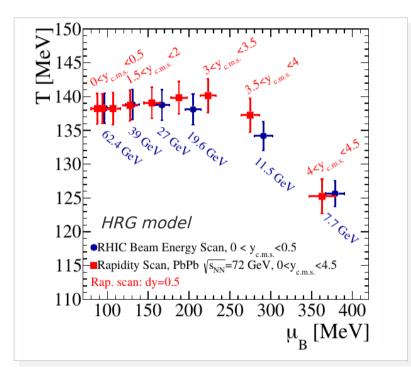
- Several investigations/projects:
 - Unpolarised storage cell gas target: SMOG2
 - Polarized storage cell gas target: LHCSpin, R&D needed with possible installation in LS3
 - Beam split and internal W solid gas (with a second crystal)



- Forward detector with full PID, 2 < $\eta_{\rm lab}$ < 5
- Precision tracking system, vertex locator
- Limitation in high-multiplicity event reconstruction
- New VELO: high readout rate, higher multiplicities

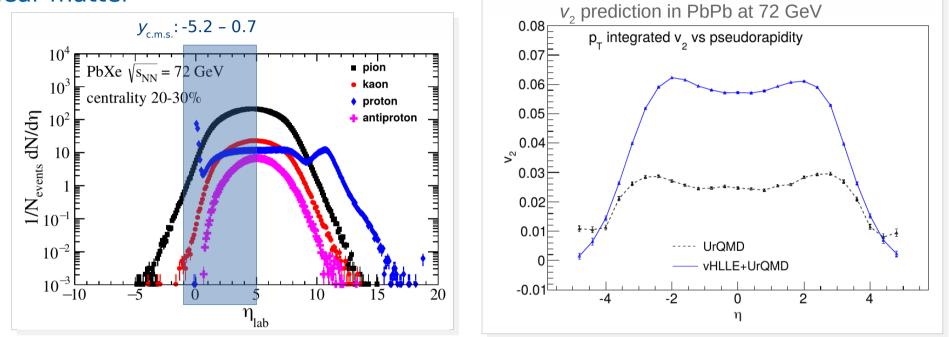
SMOG2 @LHCb




LHCb-PUB-2018-015 & CERN-PBC-Notes-2018-007

Projections:QGP

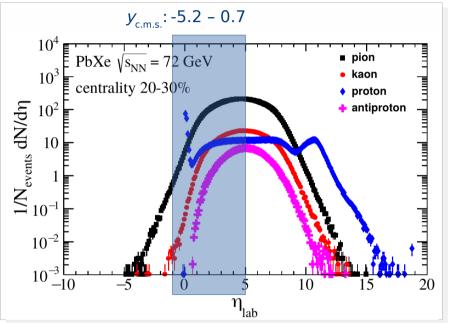
Rapidity scan of the QGP phase diagram: complementary to RHIC BES



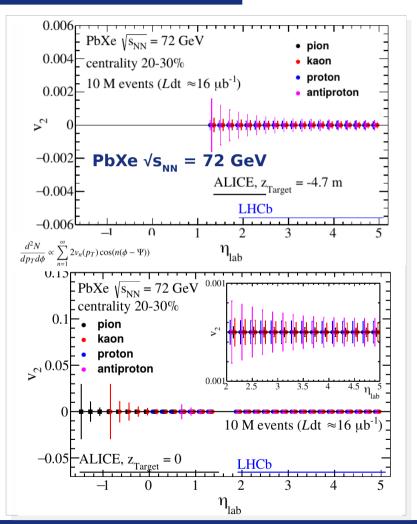
More in arXiv:1807.00603

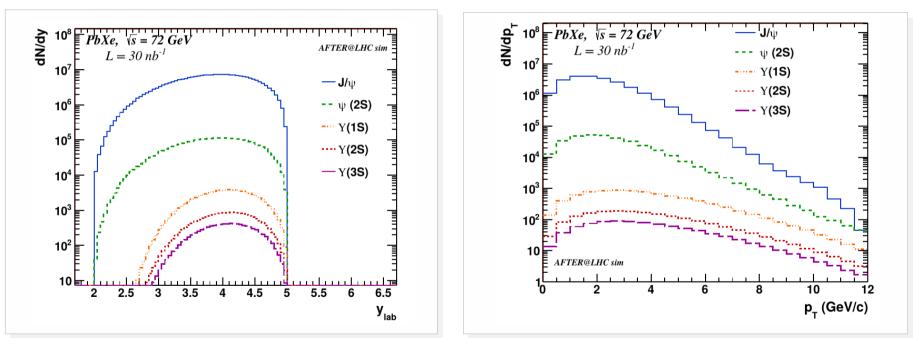
Soft probes (1)

Precise tool to study the bulk properties of the nuclear matter



- Particle yields and v_n over very broad rapidity range
- Studies of the longitudinal expansion of the matter

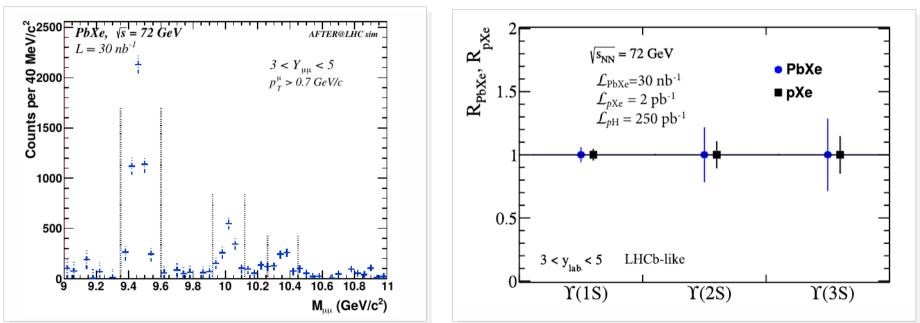

Soft probes (2)


- Particle yields and v_n over very broad rapidity range
- Studies of the longitudinal expansion of the matter

Quarkonia (1)

AFTER

- Determination of the QGP thermodynamic properties
- Precise measurements of ψ and $\Upsilon(nS)$ states down to 0 p_{τ} , in pp, pA and PbA
- Negligible contribution from recombination



Quarkonia (2)

AFTER

- Determination of the QGP thermodynamic properties
- Precise measurements of ψ and $\Upsilon(nS)$ states down to 0 p_{τ} , in pp, pA and PbA
- Negligible contribution from recombination

- Possibility to access χ_{c} and $\eta_{c}\text{, }J/\psi$ J/ψ and J/ψ D correlations
- Very good precision expected for open heavy-flavour as well

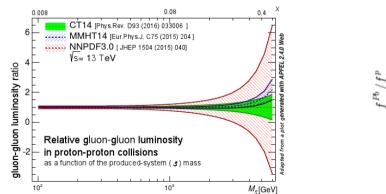
Summary

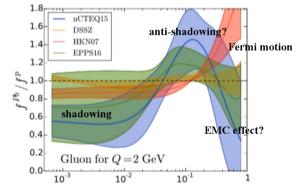
- Three main physics motivations for a high-luminosity fixed-target program at the LHC: —High-x frontier: nucleon and nuclear structure and connections with astroparticles —Nucleon spin and the transverse dynamics of partons
 - -Quark Gluon Plasma over a broad rapidity domain
- Two promising technical implementations with large luminosities:

-internal gas-target (gas-jet or storage cell)

-beam halo extraction with a bent crystal on an internal solid target

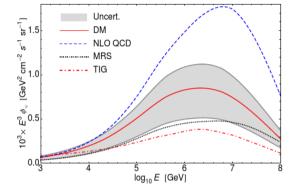
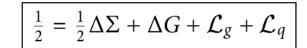
- Based on fast simulations, the AFTER@LHC study group has made Figure of Merits for ALICE and LHCb in a fixed-target mode, see *arXiv:1807.00603*: these studies support a full physics program
- Investigations/projects in **ALICE** and **LHCb** ongoing for the implementation of fixedtarget setup within the CERN Physics Beyond Collider working group

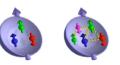

AFTER@LHC Study group: http://after.in2p3.fr/after



Physics case: high-x (2)

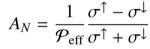
- Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics
- Structure of nucleon and nuclei at high-x are poorly known (x>0.5)
- Long-standing puzzles:
 - Origin of nuclear EMC effect studying a possible gluon EMC
 - Charm content in the proton, existence of possible non-perturbative source of c/b quarks in the proton – important for high-energy neutrino and comic-ray physics
- Search and study rare proton fluctuations where one gluon carries most of the proton momentum: test QCD in a new limit never explored
- nPDFs initial state for HI collisions

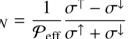



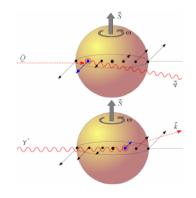

Illustration of the QCD uncertainties (QCD corrections, PDF uncertainties,...) on the prompt muon neutrino fluxes

Physics case: spin (2)

- Unravel the spin of the nucleon: dynamics and spin distributions of guarks and gluons inside (un)polarised nucleons
- 3D mapping of the proton momentum
- Missing contribution to the proton spin: gluon and guark Orbital Angular momentum $\mathcal{L}_{g;q}$
- With a transversally polarised target:
 - Single Transverse Spin Asymmetries (STSA) in hardscattering processes, with a transversal polarised hadron: indirect access to the orbital motion of partons
 - Access information of the orbital motion of partons bound inside hadrons - Sivers effect
 - Non-zero quark/gluon Sivers function \rightarrow non-zero quark/gluon OAM
 - Test TMD (Transverse Momentum Dependent functions) factorisation formalism: sign change of A_{N} between semiinclusive DIS and Drell-Yan

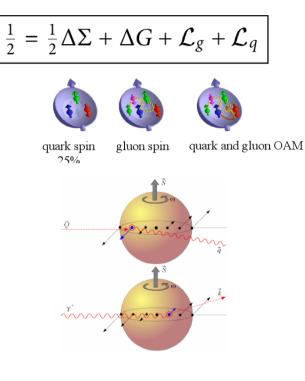


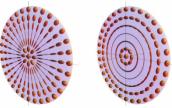




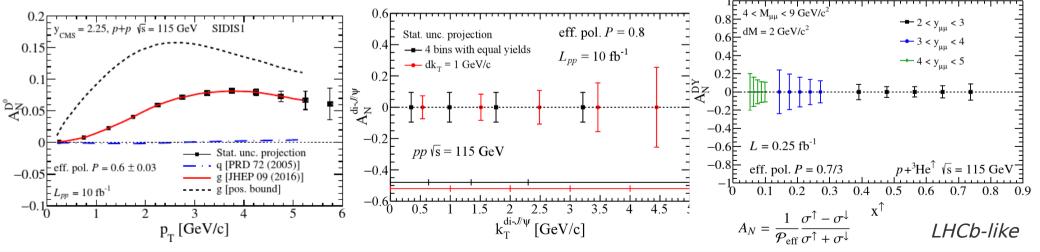
quark spin gluon spin 2.5%

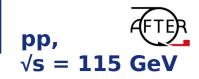
quark and gluon OAM





Physics case: spin (3)


- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- 3D mapping of the proton momentum
- Missing contribution to the proton spin: gluon and quark Orbital Angular momentum $\mathcal{L}_{g;q}$
- With a transversally polarised target:
 - Single Transverse Spin Asymmetries (STSA) in hardscattering processes, with a transversal polarised hadron: indirect access to the orbital motion of partons
 - Access information of the orbital motion of partons bound inside hadrons – Sivers effect
 - Non-zero quark/gluon Sivers function \rightarrow non-zero quark/gluon OAM
 - Test TMD (Transverse Momentum Dependent functions) factorisation formalism: sign change of A_N between semi-inclusive DIS and Drell-Yan
 - Determination of linearly polarised gluons in an unpolarised proton – Boer-Mulders effect



Spin projections

- Transversely polarised target
 - Quark Sivers effect check the sign change in A, DY vs SIDIS
 - ³He target \rightarrow Sivers effect in the neutron via DY: unique
 - Gluon Sivers effect: •
 - With D^0 difference in A_N of D^0 vs D^0 gives A_N of D^0 vs D^0 access to C-odd correlators (PHENIX: 1703.09333)
 - Quarkonia (Υ never measured) and di-J/ ψ access to k_{τ} dependence of the gluon Sivers function for the first time

EIKV

AD'AM

0.8

0.7

 $pp \sqrt{s} = 115 \text{ GeV}$

 $4 < M_{uu} < 9 \text{ GeV/c}^2$

 $0.05 - dM = 0.5 \text{ GeV/c}^2$

 $L_{pp} = 10 \text{ fb}$

eff. pol. P = 0.8

0.2

0.3

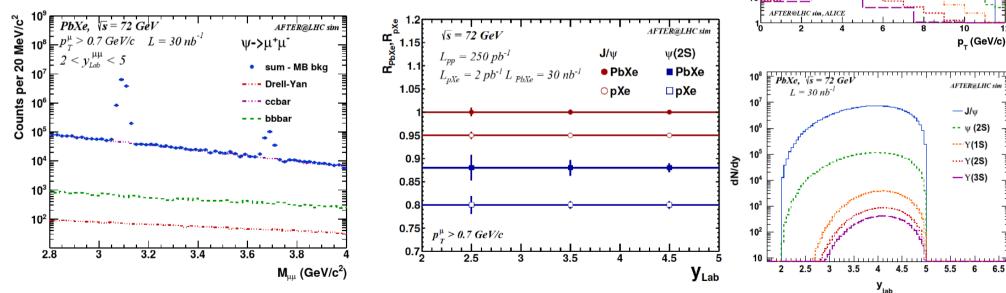
0.4

0.5

0.6

-0.1

-0.15

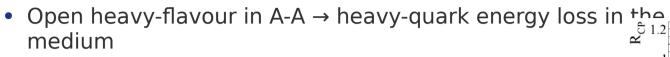

-0.2

-0.2

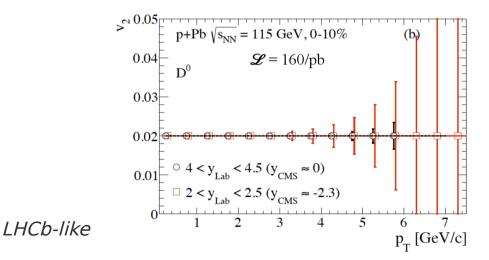
QGP: Charmonia

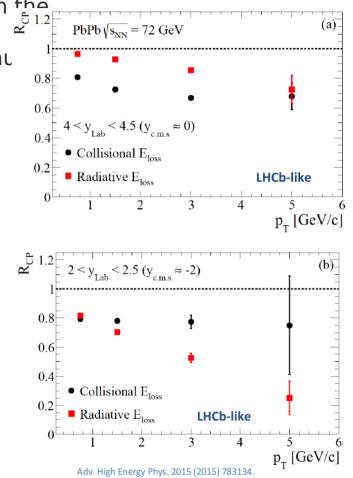
- Determination of QGP thermodynamic properties
- Negligible recombination
- p-A: Cold Nuclear Matter effects
- Precise measurements of J/ ψ and $\psi(\text{2S})$ in Pb-A and p-A
- Wide p_{T} coverage down to 0 p_{T}

LHCb-like

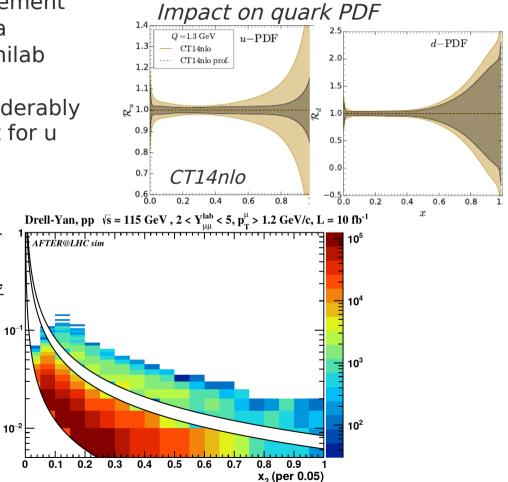


ALICE-IIKeGeV


Pb-A


QGP: Open Heavy-Flavour

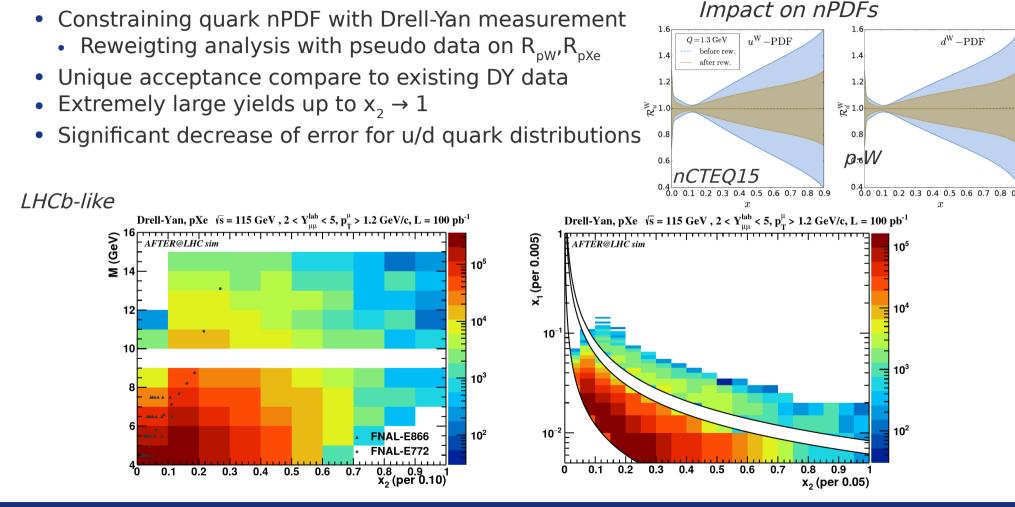
- Precise suppression measurements of charm and beau vs rapidity and $p_T \rightarrow$ medium transport coefficient
- Useful reference for charmonium studies
- p-A: study collective-like effects in small systems
- Precise D meson v₂ measurement
 - Studies vs y and different target type


quark PDF with Drell-Yan

pp, √s = 115 Gev

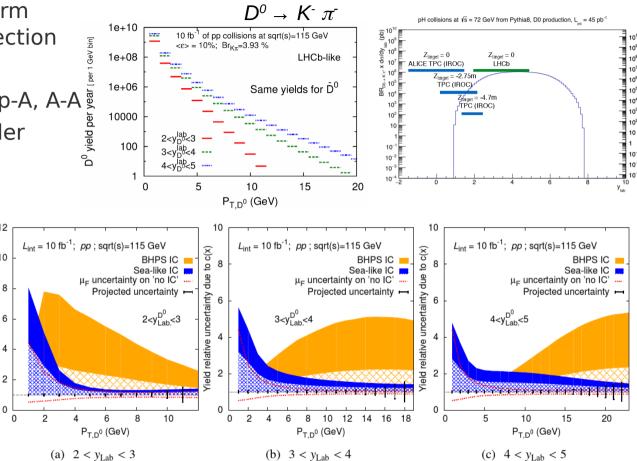
- Constraining quark PDF with Drell-Yan measurement
 - Profiling analysis and generating psedo-data
- Extension of the coverage of the existing Fermilab Drell-Yan data; NuSea data statistically limited
- Knowledge of valence quark distribution considerably improved for x > 0.4 (more pronounced effect for u quark)

LHCb-like


Drell-Yan, pp $\sqrt{s} = 115 \text{ GeV}$, $2 < Y_{\mu\nu}^{\text{lab}} < 5$, $p_{\tau}^{\mu} > 1.2 \text{ GeV/c}$, $L = 10 \text{ fb}^{-1}$ (GeV) AFTER@LHC sim 10⁵ ≥ 14 12 10⁴ 10 10³ FNAL-E605 10² FNAL-E866 FNAL-E866 D/p 0.6 0.8 0.9 1 x (per 0.10) 0.1 0.2 0.3 0.4 0.5 0.7

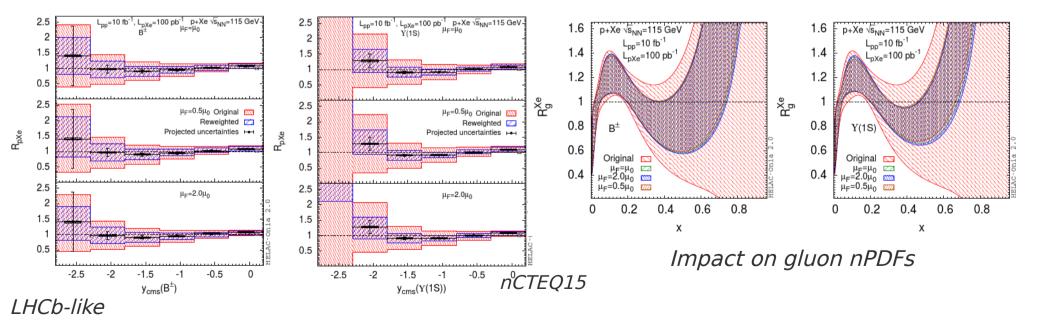
x₁ (per 0.005)

quark nPDF with Drell-Yan


charm PDF (IC) with D

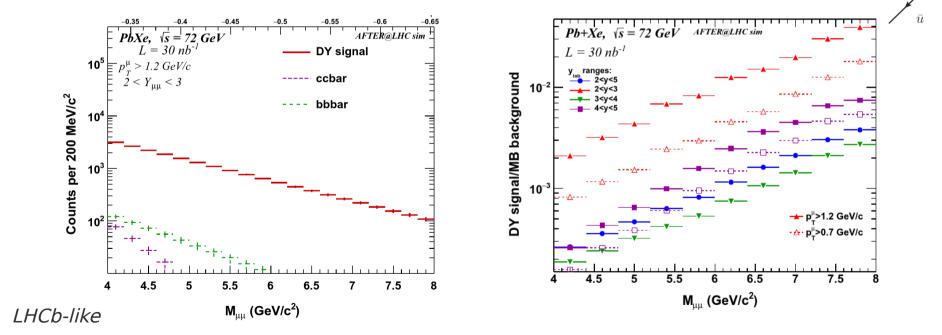
12

0



- Extremely good prospects for charm
 - Down to 0 $p_{\tau} \rightarrow$ total charm x-section
 - Wide rapidity coverage, $x_{r} \rightarrow -1$
 - High statistical precision in pp, p-A, A-A
 - With LHCb background well under control
 - Intrinsic charm modifies significantly D meson yields at large p_{τ} or forward rapidity
 - Large-x \rightarrow large charm PDF uncertainty
- uncertainty due to c(x) Perturbative via gluon • splitting vs non-perturbative field relative from intrinsic charm
 - Impact on neutrino flux and cosmic-ray physics

gluon nPDF with heavy-flavour


- Constraining gluon nPDF with D, B and quarkonium measurements
- Almost unknown for x > 0.1; anti-shadowing, EMC effect ?
 - Reweigting analysis with pseudo data on $R_{_{\rm pA}}$
- Large reduction on the gluon nPDF uncertainty: unique constraints at large x and low scales
- Other nuclear effects in play: nuclear absorption, ...

pA, √s =

Initial state effects with Drell-Yan

- Test of factorisation of the initial state effect in AA collisions
- Drell-Yan produced from initial state partons and do not interact with nuclear matter
- Ideal to test the factorisation of initial state effects from pA to AA
- Low correlated background, decreasing with y_{lab}

Pb-A.

√s_{NN} = 72 GeV

 $\wedge \wedge \wedge \wedge \wedge$

Possible implementations

Internal gas target

- Full LHC proton flux on internal gas target
- Validated by SMOG at LHCb at small gas density
- Storage cell target (HERMES-like) for (un)polarised gases
- Gas-jet target (RHIC polarimeter) for (un)polarised gases
 - \rightarrow high intensity beam on gas target (e.g. H[†], D[†], ³He[†], noble gases up to Xe)

- Internal wire/foil target as in HERA-B, STAR

• Beam halo is recycled directly on internal solid targets

- Beam line extracted with a bent crystal

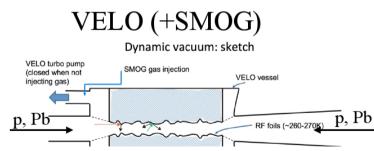
- Beam halo is deflected by a bent crystal
- Bent crystal successfully tested with proton and lead beam at LHC by UA9
- Provides a new facility but civil engineering required

- Beam "split" by a bent crystal

- Beam halo is deflected on a solid target internal to the LHC beam pipe
- Similar fluxes as for beam extraction

 \rightarrow beam halo on dense target (e.g. Be, Cu, W)

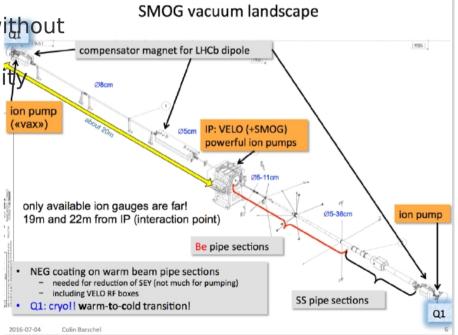
Technical implementation currently discussed within the CERN Physics Beyond Collider working


GROUPO et al. Proceedings of IPAC2018

Physics Beyond Collider Working Group meeting June 2018: https://indico.cern.ch/event/706741/

Internal gas and solid target can be coupled with existing LHC detector

SMOG@LHC: gas target


- SMOG@LHCb (System for Measuring Overlap with Gas)
 - Demonstrator with unpolarized noble gases, so far: He, Ne, Ar
 - Gas injected into Vertex Locator (VELO) vacuum
 - LHC vacuum ion pump stations located +/- 20m on both sides
 - Full intensity of the LHC proton and lead beams without decrease of the beam lifetime
 - Low pressure, P~1.5 10^{-7} mbar \rightarrow limited luminosity
 - No p-H beseline, no heavy nuclei

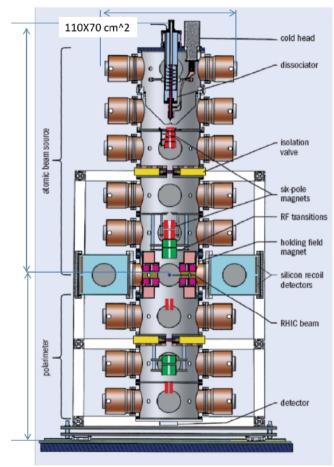
Luminosity

- Maximum obtained luminosity so far: $\mathcal{L}_{p-Ne@68GeV} = 100/nb$

Internal gas target: gas-jet

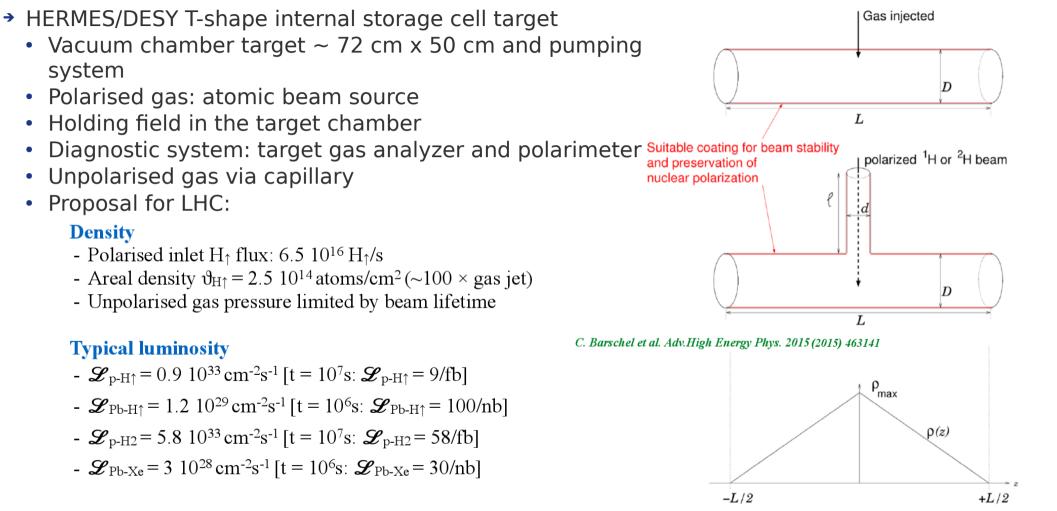
AFTER

- → Polarised H-jet polarimeter at RHIC-BNL
 - Measure proton beam polarisation at RHIC
 - 9 vacuum chambers: 9 stages of different pumping
 - Polarised gas: H, D and He possible
 - Holding field in the vacuum chamber
 - Diagnostic system: Breit-Rabi polarimeter


Density

- Polarised inlet H_{\uparrow} flux: 1.3 $10^{17}\ \text{H/s}$
- Areal density $\vartheta_{H\uparrow}$ = 1.2 $10^{12}\,atoms/cm^2\,(7\text{-}15\times SMOG)$
- Higher flux can be obtained for ${}^{3}\text{He}_{\uparrow}$ (x100) and H₂ (x1000)
- Gas target profile at interaction point: gaussian with a full width of $\sim 6 \text{ mm}$

Typical luminosity


- Using nominal LHC bunch number [2808 bunches for proton and 592 for lead] and for 1 LHC year [10⁷s proton beam and 10⁶s lead beam]
- $\boldsymbol{\mathscr{L}}_{p-H\uparrow} = 4.5 \ 10^{30} \ cm^{-2} s^{-1} \ [t = 10^7 s: \boldsymbol{\mathscr{L}}_{p-H\uparrow} = 45/pb]$
- $\mathscr{L}_{p-H2} = 10^{33}$ - 10^{34} cm⁻²s⁻¹ [t = 10^7 s: $\mathscr{L}_{p-H2} = 10$ -100/fb]

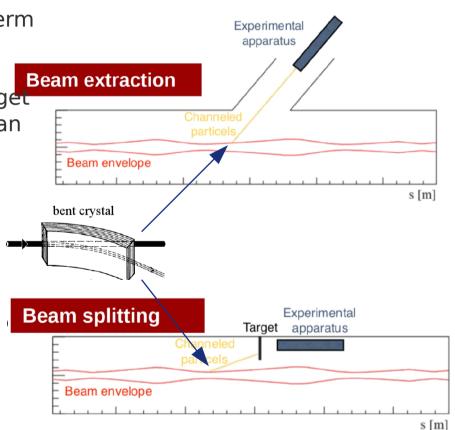
Internal gas target: storage cell

system

Density

Slow beam extraction: bent crysta

S.Redaelli, Physics Beyond Collider Kickoff workshop, CERN, 2016


- → Bent crystal studies by UA9
 - For collimation purpose at the LHC
 - Beam extraction: new beam line possible (long-term project)
 - Beam splitting:
 - Crystal located ~100 m downstream of the target
 - Solid target internal to the beam pipe close to an existing experimental apparatus
 - Absorber ~100 m upstream the detector

Extracted proton and lead flux

- Proton flux ~5 x 10⁸ p/s (LHC beam loss: ~10⁹ p/s)
- Lead flux ~2 x 10^5 Pb/s

Typical luminosity

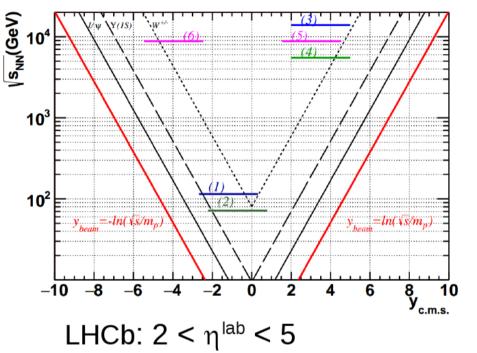
- Assuming 5 mm target length
- $\mathscr{L}_{p-W} = 1.6 \ 10^{31} \text{ cm}^{-2}\text{s}^{-1} [t = 10^7 \text{s}: \mathscr{L}_{p-W} = 160/\text{pb}]$
- \mathscr{L}_{Pb-W} = 3 10²⁷ cm⁻²s⁻¹ [t = 10⁶s: \mathscr{L}_{Pb-W} = 3/nb]

Possible implementation: ALICE

- → Beam splitting with crystal + internal target
 - Located at \sim 1.3 cm from the beam axis
 - Pneumatic motion system with two position IN and OUT of the beam pipe inside the L3 solenoid
 - Target type: Be, C, Ti, W
 - Discussion ongoing
- Achievable yearly luminosities:
 - With gas target (storage cell)
 - $-\mathscr{L}_{p-H2/H\uparrow@115GeV}=260/pb, \mathscr{L}_{p-Xe@115GeV}=8/pb$
 - $-\mathscr{L}_{\text{Pb-Xe}@72\text{GeV}} = 8/\text{nb}$
 - With beam splitting and at most 5 mm solid target
 - $-\mathscr{L}_{p-W@115GeV}=6/pb$
 - $-\mathscr{L}_{Pb-W@72GeV}=3/nb$

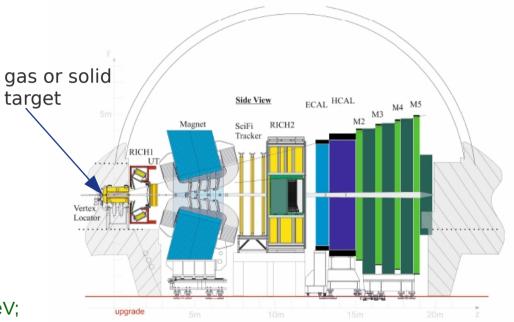
ALICE Readout for Run3: 50 kHz in Pb-Pb and 200kHz-1 MHz in p-p/p-A

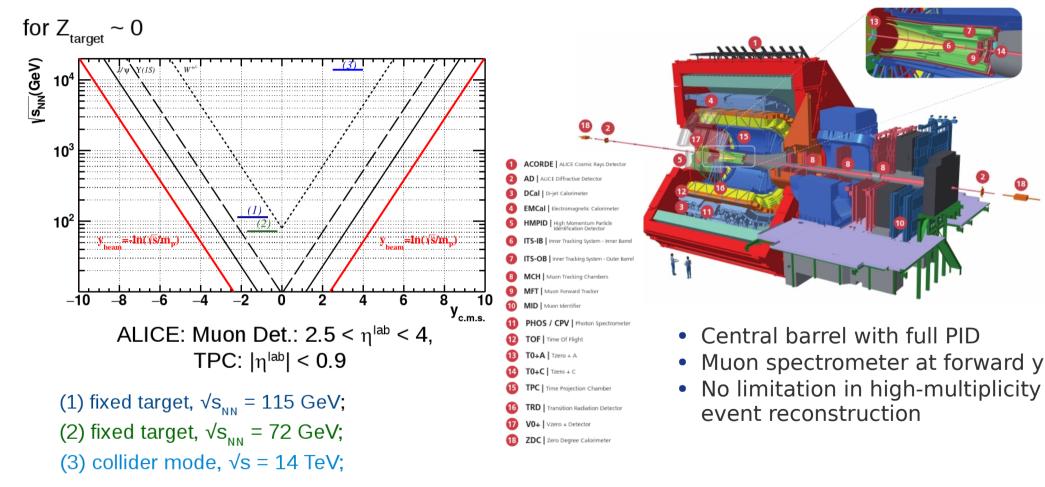
Integrated luminosities: ALICE



		ALICE					
		proton beam ($\sqrt{s_{\rm NN}}$ = 115 GeV)			Pb beam ($\sqrt{s_{\rm NN}}$ = 72 GeV)		
Target		L	Inel. rate	$\int \mathcal{L}$	L	Inel. rate	$\int \mathcal{L}$
		$[\rm cm^{-2} \ s^{-1}]$	[kHz]		$[\text{cm}^{-2} \text{ s}^{-1}]$	[kHz]	
Internal gas target (gas- jet option)	H^{\uparrow}	4.3×10^{30}	168	43 pb ⁻¹	5.6×10^{26}	1	0.56 nb^{-1}
	H ₂	2.6×10^{31}	1000	$0.26 {\rm fb}^{-1}$	2.8×10^{28}	50	28 nb ⁻¹
	\mathbf{D}^{\uparrow}	4.3×10^{30}	309	43 pb ⁻¹	5.6×10^{26}	1.2	0.56 nb^{-1}
	³ He [↑]	8.5×10^{30}	1000	85 pb ⁻¹	2.0×10^{28}	50	20 nb ⁻¹
	Xe	7.7×10^{29}	1000	7.7 pb^{-1}	8.1×10^{27}	50	8.1 nb ⁻¹
Beam split- ting	С	3.7×10^{30}	1000	37 pb ⁻¹	5.6×10^{27}	18	5.6 nb^{-1}
	Ti	1.4×10^{30}	1000	14 pb ⁻¹	2.8×10^{27}	13	2.8 nb^{-1}
	W	5.9 ×10 ²⁹	1000	5.9 pb^{-1}	3.1×10^{27}	21	3.1 nb^{-1}

Interaction rate limited to 1 MHz by the expected detector data taking rate capabilities


Kinematic coverage: LHCb


(1) fixed target, $\sqrt{s_{_{NN}}} = 115 \text{ GeV}$; (2) fixed target, $\sqrt{s_{_{NN}}} = 72 \text{ GeV}$; (3) collider mode, $\sqrt{s} = 14 \text{ TeV}$; (4) collider mode, $\sqrt{s_{_{NN}}} = 5.5 \text{ TeV}$, (5),(6) $\sqrt{s_{_{NN}}} = 8.8 \text{ TeV}$

- Forward detector with full PID
- Limitation in high-multiplicity event reconstruction

Kinematic coverage: ALICE

