Measurement of double differential groomed jet observables in p+p collisions at STAR

J. Bielčíková (NPI CAS), R. K. Elayavalli (WSU), J. Putschke (WSU) and Georgij Ponimatkin (NPI CAS)

Motivation for measuring $log(k_T)$, $p_{T,b}$ and z_g

Measuring that will allow us to fully quantify parton shower evolution

STAR 🖈

 $p_{T,b}$ In each split we define $p_{T,a}$ and $p_{T,b}$, $p_{T,a} > p_{T,b}$, $k_T = p_{T,b} \Delta R_{ab}$ and z = -- $p_{T.a} + p_{T.b}$

Motivation for measuring $log(k_T)$, $p_{T,b}$ and z_g

- Jet substructure measurements are important for both p+p and A+A collisions Precise measurement of jet substructure allows us to constrain theory models A lot of jet substructure observables are calculable within pQCD In heavy-ion regime we expect modifications of substructure due to the medium
- - Certain observables are expected to be more sensitive to jet quenching that "plain" jet spectra measurements

- Measuring $log(k_T)$ allows us to map parton shower dynamics more precisely • M_{i} , z_{g} and R_{g} analyses are in progress at STAR
- This measurement will allow us to map splitting scale in k_T and ΔR simultaneously

probe of medium induced modification on jet emissions

STAR *

Double differential $p_{T,b}$ and z_g measurement on the other hand might serve as a

Dataset

Run 12 p+p @ 200 GeV dataset is used for current analysis

- Bad runs and bad towers are rejected
- Tracks requirements: $|\eta| < 1$, $p_T \in [0.2, 30]$ GeV/c, $N_{hits} > 20$, |DCA| < 1.0 cm • Tower requirements: $E_T \in [0.2, 30]$ GeV/c
- Jets are fist clustered with anti- k_t and then reclustered with C/A algorithm
- Jet requirements: $20 < p_T^{jet} < 40$ GeV/c and $|\eta^{jet}| + R < 1$
- All jets are required to pass Soft-Drop condition, i.e. there exists a split for which: $z_g = \frac{\min\{p_{T,1}, p_{T,2}\}}{p_{T,1} + p_{T,2}} > 0.1$
- Soft-Drop is shown to suppress soft radiation as well as hadronization effects in jets

Unfolding

STAR

Measured distributions are so-called "detector-level" (using p_T as an example) They are convolved with detector resolution, noise, e.t.c.

- Mathematically this can be described as $p_T^{meas} = D \star p_T^{true} + \varepsilon$
- Our goal is to deconvolve this noise and get true-level distribution
- For this we need to estimate response matrix $\mathbf{R}[p_T^{true} \rightarrow p_T^{meas}]$
- Our goal is then to solve for true distribution $\mathbf{p}_T^{meas} = \mathbf{R}[p_T^{true} \rightarrow p_T^{meas}]\mathbf{p}_T^{truth}$

Unfolding

STAR *

To unfold measured distribution we use Bayesian unfolding We fix jet p_T to lie in $20 < p_T^{jet} < 40$ GeV/c bin

Unfolded $log(k_T)$ distributions for R = 0.6 jets at $\Delta R \in [0.05, 0.15]$

Unfolded $log(k_T)$ distributions for R = 0.6 jets at $\Delta R \in [0.15, 0.25]$

Unfolded $log(k_T)$ distributions for R = 0.6 jets at $\Delta R \in [0.25, 0.6]$ p+p \sqrt{s} = 200 GeV, Soft-Dropped anti-k_T + C/A R = 0.6

Unfolded $p_{T,b}$ distributions for R = 0.6 jets at $\Delta R \in [0.05, 0.15]$

Unfolded $p_{T,b}$ distributions for R = 0.6 jets at $\Delta R \in [0.15, 0.25]$

Unfolded $p_{T,b}$ distributions for R = 0.6 jets at $\Delta R \in [0.25, 0.6]$ p+p \sqrt{s} = 200 GeV, Soft-Dropped anti-k_T + C/A R = 0.6

Unfolded z_g distributions for R = 0.6 jets at $\Delta R \in [0.05, 0.15]$

p+p \sqrt{s} = 200 GeV, Soft-Dropped anti-k₊ + C/A R = 0.6

STAR

Unfolded z_q distributions for R = 0.6 jets at $\Delta R \in [0.15, 0.25]$

Unfolded z_g distributions for R = 0.6 jets at $\Delta R \in [0.25, 0.6]$ p+p \sqrt{s} = 200 GeV, Soft-Dropped anti-k₊ + C/A R = 0.6

STAR

Unfolded $log(k_T)$ distributions comparison wrt ΔR

STAR *

We observe increase in $log(k_T)$ with increasing ΔR

Unfolded $p_{T,b}$ distributions comparison wrt ΔR

STAR ☆

We observe increase in flatness with decreasing ΔR

Unfolded z_g distributions comparison wrt ΔR

STAR 🖈

We observe increase in flatness with decreasing ΔR

Conclusion

Analysis of double differential jet substructure at STAR is in progress We need to finish correction on jet population due to the detector p_T smearing • Currently 3D unfolding of $\log(k_T)/p_{T,b}/z_g$ vs ΔR and p_T is explored Another idea is to use jet energy scale (JES) to correct jet population

Future steps

- Once unfolding is finished we can immediately evaluate systematic errors

We expect preliminary results by May 2020 and paper proposal by December 2020 Targets for talks/posters are **BOOST 2020** @ Hamburg and ICHEP 2020 @ Prague

