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Theoretical frame

I Theoretical background for our work mainly theory of
quantum measurements and information theory

I We start with von Neumann (projective) measurement,
then generalize to Positive operator-valued measure
(POVM)

I From information theory we use mostly the concept of
informational entropy
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Theoretical frame

Projectors, measurement operators of the von Neumann
measurement, are defined as follows:

P̂n = |λ〉n 〈λ|n = |n〉 〈n| , (1)

where {|λ〉n} form an orthonormal basis on our H. Any
projector P̂n need to satisfy the following:

→ completeness relation:
∑

n P̂n = Î

→ P̂mP̂n = δmnP̂n

→ hermiticity: P̂ †n = P̂n
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Theoretical frame

We switch to a more convenient representation of a state, to
density matrix:

ρ̂ =
∑
i

P (i) |λ〉i 〈λ|i . (2)

The probability of measuring the n-th outcome can then be
written as:

P (λn) = P (n) = 〈λn|ρ̂|λn〉 = Tr(ρ̂P̂n). (3)

Acting with P̂n on ρ̂ creates a post-measurement state:

ρ̂→ ρ̂′n =
P̂nρ̂

Tr(P̂nρ̂)
=

P̂nρ̂

P (n)
(4)
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Theoretical frame

Generalizing a quantum measurement⇔ generalizing the
measurement operators:

P̂n → M̂n, (5)

where M̂n must satisfy the completeness relation. The
equations for calculating probability and post-measurement
state remain in the same form.

POVM, or positive-operator-valued measure is then defined by
following operators:

Π̂n ≡ M̂ †nM̂n (6)
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Theoretical frame

The main differences are the following:
→ number of elements in a POVM set 6= dimension of our H
→ expectational value of Π̂n gives probability of measuring

n-th outcome
→ any POVM set is utilisable for description of any

generalized measurement
Introducing POVM allows for non-idealized measurement with
noise distortion. If m are real outcomes and n outcomes of
idealized measurement, then P (m|n) represents the source of
distortion.
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Theoretical frame

In order to correctly define the concepts of noise and
disturbance, we need the information entropy H(X) which is,
for a random discrete variable X, defined as:

H(X) = −
∑
x∈X

P (X = x) log2 P (X = x), (7)

where x are realizations of X.

We also need the concept of discreet channel, which
Shannon[1] defined as any stochastic process producing
discrete sequence of symbols X ∈ X.
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Defining noise and disturbance

One usually tends to use the following definition when
addressing measurement disturbance:

∆x∆p ≥ ~
2
, (8)

which represent the limit of knowledge precision of two
non-commuting variables. To include what we call the observer
effect, we need the mathematically correct reformulation by
Ozawa[2]:

εAηB ≥
| 〈ψ|[Â, B̂]|ψ〉 |

2
(9)

Both ε and η are root-mean-square deviations of our system
observables.
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Defining noise and disturbance
We mainly used definitions and notations from Buscemi,
Francesco, et al.[3] for our calculation. They defined both noise
and disturbance using information entropy as follows:
I we have a quantum system S with observables Â and B̂,

whose set of eigenvalues are denoted as {|ψ〉a} and
{|φ〉b}, respectively

I we subject S to measurement M , which yields outcomes m
I m is then compared to eigenvalues of measured

observables, we denote them as {a} and {b}
I correlations between {a} and m can be expressed using

conditional probability distribution P (a|m) for noise,
meaning we can write:

N(M, Â) ≡ H(Â|M) (10)

Collective measurement and system disturbance CTU



Defining noise and disturbance
I situation is more complicated for disturbance, since we can

”correct” it by post-processing
I such operation yields ”guesses” denoted as {b′}
I quantifying disturbance then means finding P (b|b′)
I after that, we can write:

D(M, B̂) ≡ H(B|B′) (11)

I using previous notation and results, we can write a
noise-disturbance relation defined for any measurement M
and any Â, B̂ as follows:

N(M, Â) +D(M, B̂) ≥ − log2 max
a,b
| 〈ψa|φb〉 |2 (12)
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Reducing disturbance without addressing specific
particles

In our work, we first showed how to construct a measurement
from {P̂0, P̂1} on a system of three-identical spin-1/2 particles,
described by a following state:

|φ〉 = |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 , (13)

where |ψ〉 = α |0〉+ β |1〉 , α, β ∈ C. We required particle
indistinguishability, which gave us three options for
measurement construction:

1. tensor product of respective projectors only
2. tensor product of respective projectors with identity

operator
3. projector weakening
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Reducing disturbance without addressing specific
particles

Since we chose to measure the total spin of our system, we
made the following choice for the observables Â and B̂:

Â = σ̂x =

(
0 1
1 0

)
B̂ = σ̂z =

(
1 0
0 −1

)
(14)

with respective projectors:

P̂+ =
1

2

(
1 1
1 1

)
P̂− =

1

2

(
1 −1
−1 1

)
P̂0 =

(
1 0
0 0

)
P̂1 =

(
0 0
0 1

)
.

(15)

We then chose the input state:

|φ〉 = |0〉 ⊗ |0〉 ⊗ |0〉 . (16)
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Reducing disturbance without addressing specific
particles

I the first type of
measurement, tensor
product of respective
projectors only, requires
the post-processing we
mentioned earlier

I we use a discrete channel,
depicted right

I this then yield us
P (b|b′) =⇒ D1(M, B̂) =
1 bit

Figure: Depiction of the channel
that maps spin outcomes m ∈M
to either P (0) or P (1).
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Reducing disturbance without addressing specific
particles

The second type of measurement is more convenient – it does
not require post-processing and reduces disturbance:

D2(M, B̂) = 0.65 bit. (17)

The most interesting case is the last one – projector weakening:

Â0 = µÎ + νP̂0

Â1 = µÎ + νP̂1,
(18)

where 2µ2 + 2µν + ν2 = 1, which we know from the
completeness relation for POVM set.
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Reducing disturbance without addressing specific
particles

I because of the
measurement
construction, we again
need a post-processing
channel

I sadly, no real channel,
which yields outcomes with
the same probability as the
tensor product of
projectors only, exists

I this fact forced us to make
several adjustments

Figure: The blue frame depicts the
values of a, b, c, d ∈ 〈0, 1〉 where
they can be considered as a
description of an information
channel.
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Reducing disturbance without addressing specific
particles

We made the following substitutions to reduce the length of our
calculations: u = µ2, v = ν2 + 2µν, and plotted D3 = D3(u):
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Figure: Disturbance for the three-particle case as a function of u.
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N-particle system disturbance

We then made the previous calculation for N -particle system
and calculated disturbance for N →∞:
→ the first case remained unchanged in terms of disturbance
→ the second case:

D(M, B̂
(1,2,...,N)
j ) = H

(
2N − 1

2N
,

1

2N

)
(19)

which means for N →∞ =⇒ D → 0, which is exactly
what we expected
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N-particle system disturbance
Disturbance for the third-case of projector-weakening was
again plotted against u:
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Figure: The N -particle system disturbance as a function of u.
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