Natural Orbitals and the Equation of Motion Phonon Method

Jan Pokorný

Czech Technical University in Prague, Czechia (CTU)
Nuclear Physics Institute, Czech Academy of Sciences, Řež, Czechia (NPI CAS)

Workshop EJČF 2020

Bílý Potok u Frýdlantu, January 12 - January 18, 2020

Outline

- Nuclear Structure Theory
- Quantum Mechanics
- Hilbert spaces, Hamiltonians, bra-ket formalism
- Second-Order Perturbation Theory
- Density Matrix
- Natural Orbitals
- Equation of Motion Phonon Method
- Results
- Conclusions
- Plans for 2020

Nuclear Structure Theory

What is inside the atomic nucleus?

- asked since the Rutherford experiment (19?? $)^{1}$
- to this day no exact answer, we need models
- the first model approaches - liquid drop, shell model
- collective vs. microscopic

What about the potential between nucleons?

- no answer from QCD
- potentials based on meson exchange (realistic)
- or just fit a function that satisfies all symmetries known in NN interaction (phenomenological, effective)
- what about many-body interactions?

Collective behaviour, excitations, transitions?

- we try to find a model that describes most nuclear phenomena
${ }^{1}$ Question for undergrad students.

Quantum Mechanics

Hilbert space \mathcal{H}

Vector space with scalar product that induces norm and metric and is complete.
I.e. every Cauchy series of its elements converges to its limit in the Hilbert space.

Hamiltonian \hat{H}

Sum of kinetic energy operators and potential energy operators acting on all particles in the given Hilbert space.

Schrödinger Equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(\vec{x}, t)=\hat{H} \psi(\vec{x}, t) \tag{1}
\end{equation*}
$$

Dirac Formalism

Bra- $\langle\psi|$ and ket- $|\psi\rangle$ vectors
Hermite conjugates

$$
\begin{equation*}
(|\psi\rangle)^{+}=\langle\psi| \tag{2}
\end{equation*}
$$

Scalar product example in $\mathcal{H}=L^{2}(\mathbb{R}, \mathrm{~d} x)$

$$
\begin{equation*}
\langle\psi \mid \phi\rangle=\int_{\mathbb{R}} \bar{\psi}(x) \phi(x) \mathrm{d} x \tag{3}
\end{equation*}
$$

Obviously the norm gives

Norm

$$
\begin{equation*}
\|\psi\|=\langle\psi \mid \psi\rangle^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

Second Quantization

- creation $\left(a^{\dagger}\right)$ and annihilation (a) operators, particle vacuum $|0\rangle$

One-particle state

$$
\begin{equation*}
|\psi\rangle=a^{\dagger}|0\rangle \tag{5}
\end{equation*}
$$

N-particle state - fully antisymmetric - Slater determinant

$$
\begin{equation*}
|\psi\rangle=a_{N}^{\dagger} \ldots a_{2}^{\dagger} a_{1}^{\dagger}|0\rangle \tag{6}
\end{equation*}
$$

Pauli exclusion principle - antisymmetrization

$$
\begin{equation*}
\left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=a_{i}^{\dagger} a_{j}^{\dagger}+a_{j}^{\dagger} a_{i}^{\dagger}=0 \Rightarrow a_{i}^{\dagger} a_{j}^{\dagger}=-a_{j}^{\dagger} a_{i}^{\dagger} \tag{7}
\end{equation*}
$$

Isotropic Harmonic Oscillator

Hamiltonian of the HO

$$
\begin{equation*}
\hat{H}=\frac{\hat{P}^{2}}{2 M}+\frac{1}{2} M \omega^{2} \hat{Q}^{2} \tag{8}
\end{equation*}
$$

- the eigenstates of \hat{H} in Eq. (8) construct orthogonal basis of the Hilbert space \mathcal{H}
- what are the eigenstates, what is the Hilbert space (?)
- we can parametrize the eigenstates by their quantum numbers

Eigenstates (coupled with spin, nucleons are spin-1/2 fermions)

$$
\begin{align*}
|i\rangle & =\left|n_{i} l_{i} j_{i} m_{j_{i}}\right\rangle=a_{i}^{\dagger}|0\rangle \tag{9}\\
\hat{\vec{J}} & =\hat{\vec{L}}+\hat{\vec{S}} \tag{10}\\
E_{i} & =\left(2 n_{i}+l_{i}+\frac{3}{2}\right) \cdot \hbar \omega \tag{11}
\end{align*}
$$

Perturbation Theory

Hamiltonian with a perturbation

$$
\begin{gather*}
\hat{H}=\hat{H}_{0}+\hat{H}^{\prime} \tag{12}\\
\hat{H}_{0}-\text { intrinsic, } \hat{H}^{\prime}-\text { perturbation }
\end{gather*}
$$

- let us suppose that we know the eigenstates of \hat{H}_{0}

$$
\begin{equation*}
\hat{H}_{0}\left|\psi_{m}\right\rangle=E_{m}\left|\psi_{m}\right\rangle \tag{13}
\end{equation*}
$$

- eigenstates form an orthonormal basis

$$
\begin{align*}
\left\langle\psi_{n} \mid \psi_{m}\right\rangle & =\delta_{n m} \\
\sum_{m}\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right| & =\mathbb{I} \tag{14}
\end{align*}
$$

Perturbation Theory

First-order correction

$$
\begin{align*}
E_{m}^{[1]} & =\left\langle\psi_{m}\right| \hat{H}^{\prime}\left|\psi_{m}\right\rangle \\
\left|\psi_{m}^{[1]}\right\rangle & =\sum_{n \neq m} \frac{\left\langle\psi_{m}\right| \hat{H}^{\prime}\left|\psi_{m}\right\rangle}{E_{m}-E_{n}}\left|\psi_{n}\right\rangle \tag{15}
\end{align*}
$$

Second-order correction

$$
\begin{align*}
E_{m}^{[2]} & =\sum_{n \neq m} \frac{\left.\left|\left\langle\psi_{n}\right| \hat{H}^{\prime}\right| \psi_{m}\right\rangle\left.\right|^{2}}{E_{m}-E_{n}} \\
\left|\psi_{m}^{[2]}\right\rangle & =\sum_{k \neq m} \sum_{n \neq m} \frac{\left\langle\psi_{n}\right| \hat{H}^{\prime}\left|\psi_{m}\right\rangle}{E_{m}-E_{n}} \frac{\left\langle\psi_{k}\right| \hat{H}^{\prime}\left|\psi_{m}\right\rangle}{E_{m}-E_{k}}\left|\psi_{k}\right\rangle \tag{16}
\end{align*}
$$

Hartree-Fock Method

Nuclear Hamiltonian \Rightarrow Mean Field + Residual Interaction

$$
\begin{equation*}
\hat{H}=\sum_{a=1}^{A} \frac{\hat{P}_{a}^{2}}{2 M_{a}}+\frac{1}{2} \sum_{a \neq b}^{A} \hat{V}\left(\vec{r}_{a}, \vec{r}_{b}\right) \Rightarrow \hat{H}_{\mathrm{MF}}+\hat{V}_{\mathrm{res}} \tag{17}
\end{equation*}
$$

- Nobel prize winning question \#1

$$
\text { What is } \hat{V}\left(\vec{r}_{a}, \vec{r}_{b}\right) \text { ? }
$$

- Nobel prize winning question \#2

How to solve the Schrödinger equation with the Hamiltonian (17)?

- let us now focus on the second (many-body problem) which we can approximatively solve with variational method - Hartree-Fock
- Hilbert's space - set of Slater determinants
- we calculate the minimum of energy: $\langle\psi| \hat{H}|\psi\rangle$ - what is $|\psi\rangle$?

Hartree-Fock Basis

- unitary transformation between two bases - matrix $U_{i j}$
- we change the HO basis and look for the change in energy

$$
E_{\psi^{\prime}}=\left\langle\psi^{\prime}\right| \hat{H}\left|\psi^{\prime}\right\rangle
$$

- iterative method $\psi^{\prime} \rightarrow \psi$ (new basis as an input for the next step)
- we stop when $\left|E_{\psi}-E_{\psi^{\prime}}\right|<\delta$, where δ is a given precision parameter
- the new basis is called the Hartree-Fock basis and the ground state is called the Hartree-Fock state denoted as $|\mathrm{HF}\rangle$

Hartree-Fock State

$$
\begin{equation*}
|\mathrm{HF}\rangle=\prod_{i=1}^{Z} a_{i}^{\prime \dagger}|0\rangle_{\mathrm{p}} \otimes \prod_{i=1}^{N} b_{i}^{\prime \dagger}|0\rangle_{\mathrm{n}} \tag{18}
\end{equation*}
$$

One-Body Density Matrix

One-Body Density Matrix

$$
\begin{equation*}
\rho_{j i}=\langle\mathrm{HF}| a_{i}^{\dagger} a_{j}|\mathrm{HF}\rangle \tag{19}
\end{equation*}
$$

- construction of Natural Orbitals (NO) basis - perturbation theory up to $2^{\text {nd }}$ order

Correlated Wave Function

$$
\begin{equation*}
\left|\Psi_{\text {corr. }, m}^{\mathrm{MBPT}(2)}\right\rangle=\left|\psi_{m}^{[0]}\right\rangle+\left|\psi_{m}^{[1]}\right\rangle+\left|\psi_{m}^{[2]}\right\rangle \tag{20}
\end{equation*}
$$

Correlated One-Body Density Matrix

$$
\begin{equation*}
\rho_{j i}^{\text {corr. }}=\left\langle\Psi_{\text {corr. }}^{\mathrm{MBPT}(2)}\right|: a_{i}^{\dagger} a_{j}:\left|\Psi_{\text {corr. }}^{\mathrm{MBPT}(2)}\right\rangle \tag{21}
\end{equation*}
$$

One-Body Density Matrix

- we need to construct density matrix ρ so that

$$
\begin{equation*}
\operatorname{Tr} \rho=A \tag{22}
\end{equation*}
$$

- after a lengthy discussion over occupied and unoccopied single-particle states we arrive at

Total Density Matrix

$$
\begin{equation*}
\rho_{j i}^{\text {tot }}=\langle\mathrm{HF}| a_{i}^{\dagger} a_{j}|\mathrm{HF}\rangle+\rho_{j i}^{\text {corr. }} \tag{23}
\end{equation*}
$$

- the correlated density matrix is a correction to the total ground-state density matrix

Natural Orbitals

- correlated one-body density matrix is decomposed into 9 terms

$$
\begin{equation*}
\rho_{j i}^{\text {tot. }} \approx \rho_{j i}^{00}+\rho_{j i}^{11}+\rho_{j i}^{20}+\rho_{j i}^{02}+\left(\rho_{j i}^{10}+\rho_{j i}^{01}+\rho_{j i}^{12}+\rho_{j i}^{21}+\rho_{j i}^{22}\right) \tag{24}
\end{equation*}
$$

- $\rho_{j i}^{10}$ and $\rho_{j i}^{01}$ are equal to zero ${ }^{2}, \rho_{j i}^{12}, \rho_{j i}^{21}$, and $\rho_{j i}^{22}$ get neglected
- terms in decomposition (24) are defined as follows:

$$
\begin{aligned}
\rho_{j i}^{00} & =\left\langle\psi_{m}^{[0]}\right| a_{i}^{\dagger} a_{j}\left|\psi_{m}^{[0]}\right\rangle \equiv\langle\mathrm{HF}| a_{i}^{\dagger} a_{j}|\mathrm{HF}\rangle \\
\rho_{j i}^{11} & =\left\langle\psi_{m}^{[1]}\right|: a_{i}^{\dagger} a_{j}:\left|\psi_{m}^{[1]}\right\rangle \\
\rho_{j i}^{20} & =\left\langle\psi_{m}^{[2]}\right|: a_{i}^{\dagger} a_{j}:\left|\psi_{m}^{[0]}\right\rangle \\
\rho_{j i}^{02} & =\left\langle\psi_{m}^{[0]}\right|: a_{i}^{\dagger} a_{j}:\left|\psi_{m}^{[2]}\right\rangle
\end{aligned}
$$

[^0]
Natural Orbitals

- the diagonalization of the one-body density matrix $\rho^{\text {tot. }}$ yields the basis of natural orbitals (unitary transformation)
- we define new creation and annihilation operators that are linear combinations of the corresponding HF operators - $\tilde{a}_{i}^{\dagger}, \tilde{a}_{i}$ and $\tilde{b}_{i}^{\dagger}, \tilde{b}_{i}$
- new wave function of the ground state (in NO basis)

$$
\begin{equation*}
|\mathrm{NAT}\rangle=\prod_{h} \tilde{a}_{h}^{\dagger}|0\rangle_{\mathrm{p}}^{\mathrm{NAT}} \otimes \prod_{h} \tilde{b}_{h}^{\dagger}|0\rangle_{\mathrm{n}}^{\mathrm{NAT}} \tag{26}
\end{equation*}
$$

where h runs over first A occupied states

- we define occupied states by "occupation numbers"
- in HF basis occupation numbers are strictly 0 or 1
- in NAT basis the occupation numbers are ≈ 0 or ≈ 1
- there is a well-defined gap between numbers close to 0 and those close to 1

Radial Parts of Wave Functions

Energy of the Ground State of ${ }^{16} \mathrm{O}$

Point Proton Radius of ${ }^{16} \mathrm{O}$

Excitations - phonons - Tamm-Dancoff Approximation

- can be used in HF or NAT basis
- NAT basis improves drastically the convergence of the correlation energy
- particle-hole excitations - phonons - linear combinations of p-h states

TDA Phonon

$$
\begin{equation*}
Q_{\lambda}^{\dagger}=\sum_{p h} c_{p h}^{\lambda, \mathrm{p}} a_{p}^{\dagger} a_{h}+\sum_{p h} c_{p h}^{\lambda, \mathrm{n}} b_{p}^{\dagger} b_{h} \tag{27}
\end{equation*}
$$

- $c_{p h}^{\lambda, \mathrm{p}}, c_{p h}^{\lambda, \mathrm{n}}$ - linear combination coeff., $a_{p}^{\dagger}, b_{p}^{\dagger}$ - particle state p, a_{h}, b_{h} hole state h
- particle states - unoccupied (HF basis occ. number 0, NAT basis occ. number ≈ 0)
- hole states - occupied (HF basis occ. number 1, NAT basis occ. number ≈ 1)

Tamm-Dancoff Equation

- 1 phonon excitation

TDA Equation in HF basis

$$
\begin{equation*}
\langle\mathrm{HF}| Q_{\lambda^{\prime}}\left[\hat{H}, Q_{\lambda}^{\dagger}\right]|\mathrm{HF}\rangle=\left(E_{\lambda}-E_{\mathrm{HF}}\right) \delta_{\lambda^{\prime} \lambda} \tag{28}
\end{equation*}
$$

- TDA can be used on NAT basis too

2 Phonons - Plan for 2020

- Equation of Motion Phonon Method
- construction of n-phonon basis from knowledge of $n-1$ phonon basis
- mean field (HF or NAT) - 0 phonons - known
- TDA - 1 phonon

Phonon Basis States

$$
\begin{equation*}
\left|\alpha_{n}\right\rangle=\sum_{\lambda \alpha_{n-1}}\left|\left(Q_{\lambda}^{\dagger} \times \alpha_{n-1}\right)^{\alpha_{n}}\right\rangle \tag{29}
\end{equation*}
$$

Equation of Motion

$$
\begin{equation*}
\left\langle\beta\left\|\left[\hat{H}, Q_{\lambda}^{\dagger}\right]^{\lambda}\right\| \alpha\right\rangle=\left(E_{\beta}-E_{\alpha}\right)\left\langle\beta\left\|Q_{\lambda}^{\dagger}\right\| \alpha\right\rangle \tag{30}
\end{equation*}
$$

- so far - 2 phonon calculations - plan for 2020
- improvement of the EMPM code

EMPM Calculations

Equation of Motion - expanded

$$
\begin{equation*}
\sum_{\lambda^{\prime} \alpha^{\prime} \lambda^{\prime \prime} \alpha^{\prime \prime}}\left[\left(E_{\lambda}+E_{\alpha}-E_{\beta}\right) \delta_{\lambda \lambda^{\prime}} \delta_{\alpha \alpha^{\prime}}+\mathcal{V}_{\lambda \alpha \lambda^{\prime} \alpha^{\prime}}^{\beta}\right] \mathcal{D}_{\lambda^{\prime} \alpha^{\prime} \lambda^{\prime \prime} \alpha^{\prime \prime}}^{\beta} C_{\lambda^{\prime \prime} \alpha^{\prime \prime}}^{\beta}=0 \tag{31}
\end{equation*}
$$

- E_{β} - correlation energy
- $\mathcal{D}_{\lambda^{\prime} \alpha^{\prime} \lambda^{\prime \prime} \alpha^{\prime \prime}}^{\beta}$ - overlap matrix
- $\mathcal{V}_{\lambda \alpha \lambda^{\prime} \alpha^{\prime}}^{\beta}$ - phonon-phonon interaction matrix
- technical difficulties - the dimensions of the matrices

EMPM Calculations in HF and NAT Bases

Summary

- we introduced construction of the basis of natural orbitals (NAT)
- second-order many-body perturbation theory
- wave functions in NAT basis are more stable than in HF even for the unoccupied states
- energy of the ground state less dependent on $\hbar \omega$, as well as point proton radii
- we document significant improvement of the convergence of correlation energy in 2-phonon calculations

[^0]: ${ }^{2}$ Brillouin Theorem

