Jets and strong coupling parameter

Ota Zaplatílek¹

¹ Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

EJCF workshop, 16th January 2020

- QCD Lagrangian
- (running) coupling constant
- jets vs. partons
- equation of re-normalization group
- *α_s* measurements
 - one scale measurements
 - inclusive measurements
- summary

QCD Lagrangian

$$\mathcal{L}_{QCD} = \sum_{q} \left[i ar{\psi}_{q} \gamma^{\mu} \left(\partial_{\mu} - i g_{s} \frac{\lambda^{a}}{2} A^{a}_{\mu}(x) \right) \psi_{q} - m_{q} ar{\psi}_{q} \psi_{q} \right] + \mathcal{L}_{gauge}$$

- summing over quarks q
- quark dirac field ψ_q
- gluon vector field A^a_{μ} , $a \in \hat{8}$

two kind of parameters:

- quark mass *m*_q
- color charge g_s
- non-abelian color group SU(3) Gellman matrices λ^a

QCD Lagrangian continues

$$\mathcal{L}_{gauge} = -\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu}$$
$$= -\frac{1}{4}A^{a}_{\mu\nu}A^{a\mu\nu} - \frac{1}{2}g_{s}f^{abc}(\partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu})A^{b\mu}A^{c\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ajk}A^{b}_{\mu}A^{c}_{\nu}A^{j\mu}A^{k\nu}$$
(1)

with abelian tensor field straight $A^a_{\mu\nu}$:

$$A^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu}$$

Coupling constant

coupling constant relates closely with color charge gs

$$\alpha_s = \frac{g_s^2}{4\pi}$$

re-normalization procedure & Re-normatization Group Equation

running coupling constant

rung coupling constant

$$lpha(Q^2) = rac{lpha(Q_0^2)}{1 - B \cdot lpha(Q_0^2) \ln rac{Q^2}{Q_0^2}}$$
 $B_{QED} = rac{2}{3\pi}, \qquad B_{QCD} = -rac{11N_c - 2N_f}{6\pi}.$

- α_s is small enough at high energy momentum transfers Q
 - \rightarrow asymptotic freedom
 - \rightarrow perturbation theory is applicable also above at TeV scale
- world average value is currently

$$lpha_{s}(m_{Z}) = 0.1181 \pm 0.0011$$

Jets

- however quarks are not observed in detector directly
- · we observe secondary produced hadrons which form jets
 - carry information about quarks and gluons
 - but be careful jet is not quark or gluon
 - ightarrow Jet physic
 - \rightarrow parton vs. jet

from experimental point of view:

- how find jet \rightarrow jet algorithms and input parameters
- jet simulation, calibration ...
- jet tagging

from phenomenology point of view:

- parton distribution functions
- hadronization models
- etc.

How to evaluate α_s at e^+e^- colliders vol. 1

ratio cross sections etc. reduces amount of systematic unc.

- e^-e^+ colliders at $\sqrt{s} = M_X$:
 - α_s measured at the scale $Q = M_X, X \in \{Z^0, \tau, ...\}$

$$egin{aligned} R_{ au} &= rac{\Gamma(au o hadrons +
u_{ au})}{\Gamma(au o e^- +
u_e +
u_{ au})} \ R_Z &= rac{\Gamma(Z^0 o hadrons)}{\Gamma(Z^0 o e^- + e^+)} \end{aligned}$$

How to evaluate α_s at e^+e^- colliders vol. 2

- e^+e^- colliders at any energy:
 - inclusive measurements of α_s at various scale
 - mostly jets ration cross section measurements

Event shape variables

motivation for event shape variables:

- strong coupling constant α_s
- test asymptotic freedom
- constrain color factors for quark and gluon couplings

an example of event shape variable: thrust T na sphericity S

$$T = \max_{ec{n_T}} rac{\sum_i |ec{p}_i ec{n}_T|}{\sum_i |ec{p}_i|}$$

- $\vec{p}_i \dots$ momentum of *i*-th jet
- \vec{n}_T ... thrust axis ... unit vector in a direction of the most energetic jet
- T = 1 for exclusive dijet event
- $T = \frac{1}{2}$ for spherical event

Event shape - Thrust - calculation $e^-e^+ \rightarrow jets$

<ロ>< 回> < 回> < 巨> < 巨> < 巨> ショー のへの 11/23

Event shape - Thrust and α_s at OPAL experiment

α_s does not depend on flavor

OPAL

slide from Martin Spousta MFF lecture of *Strong interactions at high energies*

<ロ> < (回)、 < ((u)), </p>
13/23

Azimuth angle measurement

Transverse energy-energy correlations TEEC and its asymmetry ATEEC

$$\frac{1}{\sigma}\frac{d\Sigma}{d(\cos\phi)} = \frac{1}{\sigma}\sum_{ij}\int\frac{d\sigma}{dx_{Ti}dx_{Tj}d(\cos\phi)}x_{Ti}x_{Tj}dx_{Ti}dx_{Tj}$$
$$= \frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{Ti}^{A}E_{Tj}^{A}}{(\sum_{k}E_{Tk}^{A})^{2}}\delta(\cos\phi - \cos\phi_{ij})$$

- A running over all N hard-scattering multi-jet events
- i and j run over all jets in event
- $x_{Ti} = \frac{E_{Ti}}{E_T} \dots$ transverse energy of *i*-th jet
- $E_T = \sum_i E_{Ti} \dots$ total transverse energy
- $\phi_{ij} \dots$ azimuth angle between jets *i* and *j*

Asymmetry TEEC

In order to cancel uncertainties which are constant over $\cos \phi \in (-1, 1)$, it is useful to define the azimuth asymmetry of the TEEC (ATEEC):

arXiv:1707.02562 [hep-ex]

16/23

< = > = = < < < <

$\alpha_{\it s}$ from TEEC and ATEEC

χ² global fit 2016

• scale avaluated as $\frac{H_{T2}}{2}$ $\alpha_s^{TEEC}(M_Z) = 0.1162 \pm 0.0011(exp.)^{+0.0076}_{-0.0061}(scale) \pm 0.0018(PDF) \pm 0.0003(NP)$

 $\alpha_s^{ATEEC}(M_Z) = 0.1196 \pm 0.0013(\textit{exp.})^{+0.0061}_{-0.0013}(\textit{scale}) \pm 0.0017(\textit{PDF}) \pm 0.0004(\textit{NP})$

arXiv:1707.02562 [hep-ex]

α_s form Azimuth decorrelations

inclusive jets measurement

inclusive jets measurement

- NLO pQCD predictions ratio predictions / data cross-sections
- different PDF sets: CT14, HERAPDF 2.0, ABMP16, MMHT 2014, NNPDF 3.0
- systematic (JES, JER, unfolding, jet cleaning, luminosity)

α_s measurements summary plots

dependence of α_s on the scale from arXiv:1805.04691 [hep-ph].

summary

- not each constant is thrully constant
- considering higher order of perturbative theory α → α(Q²)
- summary measurements of α_s
 - one Q² scale point
 - ratio of Γ
 - various Q² scale points jet measurements
 - ratio of (differential) cross section
 - event shape variables, TEEC, ATEEC, Azimuth decorrelations ...
 - global fit based on χ^2

$$\alpha_s(m_Z) = 0.1181 \pm 0.0011$$

Thank you for your attention!

23/23

Infrared & collinear safety

properties of ideal jet algorithm-suiteble theoretical properties, universality, reasonably fast, independence
experiment, effectivity

Theoretical safety

For an observable distribution to be calculable in [fixed-order] perturbation theory, the observable should be *infra-red* safe, i.e. Insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_i is any momentum occurring in its definition, it must be invariant under the branching

$$\vec{p}_i \longrightarrow \vec{p}_j + \vec{p}_k$$
,

whenever \vec{p}_j and \vec{p}_k are parallel (collinear) or one of them is small (infrared). gluon radiation cross section:

$$d\sigma_{q \to qg} = \frac{\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ collinear divergence

・ロット (雪) (日) (日) 日

General formula for clustering algorithms

- · jets are defined by jet algorithm and set of input parameters
- cone alg.- surround significant flows of particles by cone with radius R
- clustering alg.- cluster particles retrospectively during the QCD branching

$$d_{min} = min(d_{ij}, d_{iB})$$
$$d_{iB} = p_{t_i}^{2p}$$
$$d_{ij} = min(p_{t_i}^{2p}, p_{t_j}^{2p}) \cdot \frac{\Delta R_{ij}}{R}$$
$$\Delta R_{ij} = \sqrt{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}$$

- 1 find the smallest of d_{ij} and d_{iB}
- 2 if $d_{ii} < d_{iB} \rightarrow$ recombine them
- 3 if $d_{iB} < d_{ij} \rightarrow \text{call } i \text{ as a jet and remove it from the list of particles}$
- 4 repete it from step 1 until there are no particles

- pt transverse momentum
- y rapidity
- φ azimuth angle
- distance between object
 - i and j
- distance between i and beam
- R radius
- p parameter identification

p	algorithm
1	k _t
0	Cambridge/Aachen (C./A.)
-1	anti-k _t

- k_t , anti- k_t : strong depends on p_t
 - anti-k_t: heavy and energetic particles are clustered first

(ロ) (同) (E) (E) (E) (C)

• kt: soft particles are clustered first

• C./A.:
$$d_{ij} = \frac{\Delta R_{ij}}{R} \& d_{iB} = 1$$

• clustered until all $\Delta R_{ij} > R$

Properties of jet algorithms 1/2

anti-kt alg:

- p = −1 ⇒ heavy particles are clustered first
- gives regular circular shapes \Rightarrow convenient for jet energy calibration
- proved to be infra-red and collinear safe (IRC safety)
- reasonably fast
- · currently the most widely use and safest jet algorithm

Properties of jet algorithms 2/2

- basic IR safety cone algorithms implemented in NLOJet provides "slozitost" O(N2N), what is reasonable for N < 4, but e.q. for N ~ 100 means 10¹7 year (Pb collisons)
- jet algorithms in FastJet package are based on Delaunay triangulatio of graph theory (mathematical CGAL package) to optimalize "nejlepsÄ slozitost"

název	Typ algoritmu		IR	colinear	symetrický	časová
algoritmu	typ	р	safety	safety	výstup	náročnost
k _t	klastrovací	1	1	 Image: A set of the set of the	×	$N \ln N$
C./A.	klastrovací	0	1	1	×	$N \ln N$
anti-k _t	klastrovací	-1	1	1	1	$N^{3/2}$
SIS Cone	kuželový		1	×	 Image: A set of the set of the	$N^2 \ln N$

RGE

$$\mu_R^2 \frac{d\alpha_s}{d\mu_R^2} = \beta(\alpha_s)$$
$$\beta(\alpha_s) = -(b_0 \alpha_s^2 + b_1 \alpha_s^3 + \dots)$$

・ロ・・母・・ヨ・ ヨー うへの

5/5