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Introduction to Flavour Physics

Gauge sector Higgs sector Flavour sector

• Describes gauge
interactions of
quarks and leptons

• Parametrized by 3
gauge couplings

• Breaks electro-weak
symmetry

• ”Gives” mass to
W± and Z bosons

• 2 free parameters:
Vacuum expectation
value (∼ 246 GeV)
and Higgs mass

• Quarks and leptons
masses and mixing

• 22 free
parameters ⇒ the
most puzzling part
of the Standard
Model
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Yukawa Lagrangian - before CKM Matrix Birth

• Yukawa coupling (for quarks here)

LY = Q̄LiY
d
ij φ
∗uRj

+ Q̄LiY
d
ij φdRj

+ h.c .

• From flavour eigenstates to mass eigenstates = diagonalizing Y d
ij

and Y u
ij :

VqLY
qV †qR = Mq

diag qLi = (VqL)ijq
M
Li

qRi
= (VqR)ijq

M
Ri

q = u, d

• Mass terms using φ = (v + H0)/
√

2:

LY =
v√
2
ūMLi M

u
diagu

M
Rj

+
v√
2
d̄M
Li
Md

diagd
M
Rj

+h.c . +quark Higgs interaction
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CKM Matrix Birth in Gauge Sector

• Charge current interaction

Lq
W± = − g√

2
ūMLi γ

µ(VuLV
†
dL)ijd

M
Lj
W+
µ

• The unitarity 3× 3 matrix

VuLV
†
dL = VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb
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Parametrization of the CKM matrix

• CKM is unitary matrix ⇒ 18 parameters (9 complex elements)

• Only 4 are free

VCKM =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−ıδ

0 1 0
−s13eıδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


◦ sij = sin θij , sij = cos θij

• Wolfenstein parametrization

VCKM =

 1− 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− ıη)

−λ 1− 1
2
λ2 − 1

8
λ4
(
1 + 4A2

)
Aλ2

Aλ3(1− ρ− ıη) −Aλ2 + 1
2
Aλ4(1− 2(ρ+ ıη)) 1− 1

2
A4λ4

+O(λ5)
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CP Violation in CKM Matrix

• Parity:
P̂ψ (r) = ψ (−r)

• Charge conjugation
Ĉψ (r) = ψ̄ (r)

• Time reversal
T̂ψ (r , t) = ψ (r ,−t)

• CP violated - δ parameter in CKM matrix:

VCKM =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−ıδ

0 1 0
−s13eıδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1
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Unitarity Triangles

• Unitarity of CKM matrix leads to relations between matrix
elements = unitarity triangles∑

α=u,c,t

VαiV
∗
αj = δij ,

∑
i=d ,s,b

VαiV
∗
βi = δαβ.

• Example:
VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0
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Measuring the CKM Matrix

9 of 42



Before ”True” B-Factories - b quark

• b quark prediction: 1973
Makoto Kobayashi and
Toshihide Maskawa (Nobel
Prize in 2008)

• b quark name bottom:
Haim Harari, 1975

• b quark discovery
◦ Fermilab E288 experiment -

Leon Lederman
◦ 1977
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PLUTO - Way to B-Factories

• Constructed 1973-1974
• First electromagnetic superconductive solenoid in the world
• Y(9.46 GeV) confirmation, first gluon evidence (not discovery)
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ARGUS - Way to B-Factories

• A Russian-German-United
States-Swedish
Collaboration

• DORIS
(Doppel-Ring-Speicher =
”double-ring storage”)
accelerator

• first place where the
conversion of a B-meson
into B̄ was observed
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CLEO - Way to B-Factories

• Cornell Electron Storage Ring
(CESR)

• Collision energy: from 3.5 GeV to
12 GeV at its peak

• Initially measured the properties of
the Υ(13S)
◦ Below the threshold for the B

meson production

• In 1980s: spent time at the Υ(4S)
energies

• Early 2000s: no longer competitive
measurements of B mesons, back
to Υ(1-3S) resonances
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CLEO - Way to B-Factories

• CLEO I: 1979-1988
◦ Υ(4S) discovery

• CLEO II: 1989-1999
◦ FCNC decays B+,0 → K∗+,0γ and B mesons to two charmless mesons

discovery

• CLEO III and CLEOc: 2000-2008

• longest running experiment in the history of particle physics
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Requirements for a B Factory

• Usually, b − b̄ created together (Υ(4S))
◦ Both of them need to be detected and at least one reconstructed
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Heroes of the age of flavour

• BaBar and Belle: asymmetric beams, clean environment

• CDF and D0: general purpose, b-phys in hadron collision

• ATLAS and CMS: High pT experiments, b-phys with dilepton
final states

• LHCb: dedicated experiment for b- and c-physics at the LHC
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The Asymmetric B Factories

Belle

• Experiment operation: 1999–2010

• The High Energy Accelerator
Research Organization (KEK) -
Tsukuba, Ibaraki Prefecture, Japan

• e−e+ collisions (Ee+ = 3.5 GeV,
Ee− = 8.0 GeV)
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Belle Detector

• A world-record luminosity of 2.1 · 1034 cm−2s−1

• More than 1 ab−1 of data over various bottomonium resonances

• The world largest sample of Υ(2S), Υ(4S), Υ(5S)

• From Υ(4S) → 772·106 of BB̄ pairs
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The Asymmetric B Factories

BABAR

• Experiment operation:
1999–2008

• Positron-Electron
Project (PEP)

• e−e+ collisions (Ee+ =
3.1 GeV, Ee− = 9.0
GeV)

21 of 42



The Asymmetric B Factories

BABAR

• Experiment operation:
1999–2008

• Positron-Electron
Project (PEP)

• e−e+ collisions (Ee+ =
3.1 GeV, Ee− = 9.0
GeV)

21 of 42



Belle Detector
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B-Physics Factories Luminosity
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B-Physics Factories Observations
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B-Physics Factories Observations

Observation of CP violation in B-meson system

• Measuring time dependent CP asymmetry

ACP(∆t) =
Γ
(
B̄0 → f

)
− Γ

(
B0 → f

)
Γ
(
B̄0 → f

)
+ Γ (B0 → f )

= −nf sin(2β) sin(∆md t)

• nf : CP-eigenvalue of f
◦ nf = −1 for J/ψK 0

S , ψ(2S)K 0
S

◦ nf = +1 for J/ψK 0
L

• CKM unitarity triangle angle:

sin 2β = 0.99± 0.14± 0.06
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B-Physics Factories Observations
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B-Physics Factories Observations

Observation of b → dγ
• SM: FCNC forbidden
• loop-induced FCNC possible (b → s, b → d) - penguin diagram
◦ Radiative penguin decays: charged particle emits an external real

photon

• Photon energy in Υ(4S) c.m.: 1.8− 3.4 GeV

B(B → (ρ, ω)γ)

B(B → K ∗γ)
= 0.0284± 0.0050

• First measurement of the direct CP-violating asymmetry for
B+ → ρ+γ27 of 42



B-Physics Factories Observations

Observation of b → dγ
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B-Physics Factories Observations

Evidence for D0 mixing

• D system is the one that shows the smallest mixing

• Measuring the quantity

yCP =
τ(D0 → K−π+)

τ(D0 → K+K−)
− 1

• Can be shown:

yCP = y cosφ− 1

2
AMx sinφ
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B-Physics Factories Observations

Evidence for D0 mixing

• D system is the one that shows the smallest mixing
• Measuring the quantity

yCP =
τ(D0 → K−π+)

τ(D0 → K+K−)
− 1

• Can be shown:

yCP = y cosφ− 1

2
AMx sinφ

• Violation observed

yCP = 0.0131± 0.0032± 0.0025

• Asymmetry also observed:

A = 0.0001± 0.0030± 0.0015
31 of 42



Next Generation B factories
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Next Generation B factories

• Why we need higher luminosity?
◦ target given by the physics community: 50 ab−1

• If old KEKB used:
◦ 2.1 · 1034 cm−2s−1

◦ 0.3 ab−1/year
◦ 167 years

• How to get higher luminosity?

L =
γ

2ere

(
1 +

σ∗y
σ∗x

)
I±ξ±y
β∗y

(
RL

Ry

)

◦
◦ Beam size ratio, stored current, beam-beam parameter, β, geom.

corrections (crossing angle)
33 of 42



Next Generation B factories
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Next Generation B factories
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SuperKEKB/Belle II

SuperKEKB

• New e+ source and e− gun, powerful final quadrupoles

Belle II

• Reuse of the KEKB hardware as much as possible

• Minimum requirements: sustain Belle I performance

• Important improvements:
◦ IP and secondary vertex resolution
◦ KS and π0 reconstruction efficiency
◦ PID in the encaps
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SuperKEKB/Belle II

SuperKEKB

• New e+ source and e− gun, powerful final quadrupoles

Belle II

• Reuse of the KEKB hardware as much as possible

• Minimum requirements: sustain Belle I performance

• Challenges:
◦ Higher occupancy, fake hits, noise
◦ Radiation damage
◦ Higher trigger rates: 0.5→ 20 kHz
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SuperKEKB/Belle II

Collision with nano-beam
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SuperKEKB/Belle II

Belle II
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Summary

40 of 42



Summary

• Role of flavour physics is important

• What properties B factories need?

• Belle and BABAR detectors and successes presented

• LHCb, ATLAS, CMS active, BelleII ramping up

• Still need to improve precision - NP?
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Back-up
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CP Violation

• Parity violated - is combination of P and C violated?

• Strong and EM interactions: CP conserved

• Weak interactions: CP violated:
◦ Christenson, Cronin, Fitch and Turlay 1964
◦ study of two neutral K mesons in the kaon decays, K 0

S and K 0
L

◦ if CP conserved:
K 0
S → 2π K 0

L → 3π

◦ K 0
L → 2π observed!!

◦ K 0K̄ 0 oscilation, CP violated

• Three types of CP violation:
◦ in decay
◦ in mixing
◦ in interference of mixing and decay
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CP Violation in Mixing

• probability of oscillation from meson to anti-meson is different
from the probability of oscillation from anti-meson to meson

Prob(P0 → P̄0) 6= Prob(P̄0 → P0)

• Mass eigenstates are not CP eigenstates

• Charged-current semileptonic neutral meson decays M, M̄ → l±X
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CP Violation in Decay

• decay amplitude of particle into the final state is different from the
decay amplitude of its antiparticle into its final anti-state

Γ(M → f ) 6= Γ(M̄ → f̄ )

• In charged meson (and all baryon) decays, where mixing effects are
absent, this is the only possible source of CP asymmetries
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CP Violation in Interference of Mixing and
Decay

• occurs in case both meson and antimeson decay into the same final
state

M → f M → M̄ → f
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