B-Physics Factories

Lukas Novotny

FNSPE, CTU in Prague
16. 01.2020

Introduction to Flavour Physics

Introduction to Flavour Physics

Gauge sector

- Describes gauge interactions of quarks and leptons
- Parametrized by 3 gauge couplings

Higgs sector

Breaks electro-weak
symmetry
"Gives" mass to
$W^{ \pm}$and Z bosons
2 free parameters:
Vacuum expectation
value ($\sim 246 \mathrm{GeV}$)

Flavour sector

Quarks and leptons masses and mixing 22 free
parameters \Rightarrow the most puzzling part of the Standard Model

Introduction to Flavour Physics

Gauge sector

Describes gauge
interactions of
quarks and leptons
Parametrized by 3
gauge counlings

Higgs sector

- Breaks electro-weak symmetry
- "Gives" mass to $W^{ \pm}$and Z bosons
- 2 free parameters:

Vacuum expectation value ($\sim 246 \mathrm{GeV}$) and Higgs mass

Flavour sector

Quarks and leptons masses and mixing 22 free
parameters \Rightarrow the most puzzling part of the Standard Model

Introduction to Flavour Physics

Gauge sector

$$
\begin{aligned}
\mathscr{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \bar{F} \not \subset \psi+h . c
\end{aligned}
$$

Describes gauge
interactions of
quarks and leptons
Parametrized by 3
gauge couplings

Higgs sector

Breaks electro-weak
symmetry
'Gives" mass to
$W^{ \pm}$and Z bosons
2 free narameters
Vacuum expectation
value ($\sim 246 \mathrm{GeV}$)

Flavour sector
$+x_{i} y_{i j} x_{j} \phi+h c$

- Quarks and leptons masses and mixing
- 22 free parameters \Rightarrow the most puzzling part of the Standard Model

Yukawa Lagrangian - before CKM MatrixABAfthe

- Yukawa coupling (for quarks here)

$$
\mathcal{L}_{Y}=\bar{Q}_{L_{i}} Y_{i j}^{d} \phi^{*} u_{R_{j}}+\bar{Q}_{L_{i}} Y_{i j}^{d} \phi d_{R_{j}}+\text { h.c. }
$$

- From flavour eigenstates to mass eigenstates $=$ diagonalizing $Y_{i j}^{d}$ and $Y_{i j}^{u}$:
$V_{q L} Y^{q} V_{q R}^{+}=M_{\text {diag }}^{q} \quad q_{L_{i}}=\left(V_{q L}\right)_{i j} q_{L_{i}}^{M} \quad q_{R_{i}}=\left(V_{q R}\right)_{i j} q_{R i}^{M}$
- Mass terms using $\phi=\left(v+H_{0}\right) / \sqrt{2}$:
$\mathcal{L}_{Y}=\frac{v}{\sqrt{2}} \bar{u}_{L_{i}}^{M} M_{\text {diag }}^{U} u_{R_{j}}^{M}+\frac{v}{\sqrt{2}} \bar{d}_{L_{i}}^{M} M_{\text {diag }}^{d} d_{R_{j}}^{M}+$ h.c. + quark Higgs interaction

Yukawa Lagrangian - before CKM MatrixABAfthi

- Yukawa coupling (for quarks here)

$$
\mathcal{L}_{Y}=\bar{Q}_{L_{i}} Y_{i j}^{d} \phi^{*} u_{R_{j}}+\bar{Q}_{L_{i}} Y_{i j}^{d} \phi d_{R_{j}}+\text { h.c. }
$$

- From flavour eigenstates to mass eigenstates $=$ diagonalizing $Y_{i j}^{d}$ and $Y_{i j}^{u}$:

$$
V_{q L} Y^{q} V_{q R}^{\dagger}=M_{d i a g}^{q} \quad q_{L_{i}}=\left(V_{q L}\right)_{i j} q_{L_{i}}^{M} \quad q_{R_{i}}=\left(V_{q R}\right)_{i j} q_{R_{i}}^{M} \quad q=u, d
$$

- Mass terms using $\phi=\left(v+H_{0}\right) / \sqrt{2}$:

Yukawa Lagrangian - before CKM MatrixABAfthi

- Yukawa coupling (for quarks here)

$$
\mathcal{L}_{Y}=\bar{Q}_{L_{i}} Y_{i j}^{d} \phi^{*} u_{R_{j}}+\bar{Q}_{L_{i}} Y_{i j}^{d} \phi d_{R_{j}}+\text { h.c. }
$$

- From flavour eigenstates to mass eigenstates $=$ diagonalizing $Y_{i j}^{d}$ and $Y_{i j}^{u}$:

- Mass terms using $\phi=\left(v+H_{0}\right) / \sqrt{2}$:
$\mathcal{L}_{Y}=\frac{v}{\sqrt{2}} \bar{u}_{L_{i}}^{M} M_{\text {diag }}^{u} u_{R_{j}}^{M}+\frac{v}{\sqrt{2}} \bar{d}_{L_{i}}^{M} M_{\text {diag }}^{d} d_{R_{j}}^{M}+$ h.c. + quark Higgs interactior

CKM Matrix Birth in Gauge Sector

- Charge current interaction

$$
\mathcal{L}_{W \pm}^{q}=-\frac{g}{\sqrt{2}} \bar{u}_{L_{i}}^{M} \gamma^{\mu}\left(V_{u L} V_{d L}^{\dagger}\right)_{i j} d_{L_{j}}^{M} W_{\mu}^{+}
$$

- The unitarity 3×3 matrix

$$
V_{u L} V_{d L}^{\dagger}=V_{C K M}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Parametrization of the CKM matrix

- CKM is unitary matrix $\Rightarrow 18$ parameters (9 complex elements)
- Only 4 are free
$V_{C K M}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-\imath \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{\imath \delta} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)$
- $s_{i j}=\sin \theta_{i j}, s_{i j}=\cos \theta_{i j}$
- Wolfenstein parametrization

$$
V_{C K M}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4} & \lambda & A \lambda^{3}(\rho-\imath \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}\left(1+4 A^{2}\right) & A \lambda^{2} \\
A \lambda^{3}(1-\rho-\imath \eta) & -A \lambda^{2}+\frac{1}{2} A \lambda^{4}(1-2(\rho+\imath \eta)) & 1-\frac{1}{2} A^{4} \lambda^{4}
\end{array}\right)+\mathcal{O}\left(\lambda^{5}\right)
$$

$C P$ Violation in CKM Matrix

- Parity:

$$
\hat{P} \psi(\mathbf{r})=\psi(-\mathbf{r})
$$

- Charge conjugation

$$
\hat{C} \psi(\mathbf{r})=\bar{\psi}(\mathbf{r})
$$

- Time reversal

$$
\hat{T} \psi(r, t)=\psi(r,-t)
$$

- CP violated $-\delta$ parameter in CKM matrix:
$V_{C K M}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-\imath \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{\imath \delta} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right)$

Unitarity Triangles

- Unitarity of CKM matrix leads to relations between matrix elements $=$ unitarity triangles

$$
\sum_{\alpha=u, c, t} V_{\alpha i} V_{\alpha j}^{*}=\delta_{i j}, \quad \sum_{i=d, s, b} V_{\alpha i} V_{\beta i}^{*}=\delta_{\alpha \beta}
$$

- Example:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

Measuring the CKM Matrix

Before "True" B-Factories - b quark

- b quark prediction: 1973

Makoto Kobayashi and
Toshihide Maskawa (Nobel Prize in 2008)

- b quark name bottom:

Haim Harari, 1975

- b quark discovery

Before "True" B-Factories - b quark

- b quark prediction: 1973

Makoto Kobayashi and
Toshihide Maskawa (Nobel
Prize in 2008)

- b quark name bottom:

Haim Harari, 1975

Before "True" B-Factories - b quark

- b quark prediction: 1973 Makoto Kobayashi and Toshihide Maskawa (Nobel Prize in 2008)
- b quark name bottom: Haim Harari, 1975
- b quark discovery
- Fermilab E288 experiment Leon Lederman
- 1977

PLUTO - Way to B-Factories

- Constructed 1973-1974
- First electromagnetic superconductive solenoid in the world
- $\mathrm{Y}(9.46 \mathrm{GeV})$ confirmation, first gluon evidence (not discovery)
(a)
(b)

ARGUS - Way to B-Factories

- A Russian-German-United States-Swedish
Collaboration
- DORIS
(Doppel-Ring-Speicher = "double-ring storage") accelerator
- first place where the conversion of a B-meson into \bar{B} was observed

CLEO - Way to B-Factories

- Cornell Electron Storage Ring (CESR)
- Collision energy: from 3.5 GeV to 12 GeV at its peak
- Initially measured the properties of the $\Upsilon(13 S)$
- Below the threshold for the B meson production
- In 1980s: spent time at the $\Upsilon(4 \mathrm{~S})$ energies
- Early 2000s: no longer competitive measurements of B mesons, back to $\Upsilon(1-3 S)$ resonances

CLEO - Way to B-Factories

- CLEO I: 1979-1988
- $\Upsilon(4 \mathrm{~S})$ discovery
- CLEO II: 1989-1999
- FCNC decays $B^{+, 0} \rightarrow K^{*+, 0} \gamma$ and \mathbf{B} mesons to two charmless mesons discovery
- CLEO III and CLEOc: 2000-2008
- longest running experiment in the history of particle physics

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$

Both of them need to be detected and at least one reconstructed

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles

Asymmetric colliders $\left(E_{\text {beam1 }} \neq E_{\text {beam2 }}\right)$

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles
- Asymmetric colliders $\left(E_{\text {beam } 1} \neq E_{\text {beam } 2}\right)$

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles
- Asymmetric colliders ($E_{\text {beam1 }} \neq E_{\text {beam } 2}$)
- High luminosity

Millions of $B \bar{B}$ pairs needed $\rightarrow: \sim 30 \mathrm{fb}$

- High-resolution and large-coverage detector

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles
- Asymmetric colliders ($E_{\text {beam } 1} \neq E_{\text {beam } 2}$)
- High luminosity
\circ e.g.: Branching ratio of $B^{0} \rightarrow J / \psi K_{S}^{0}$ is 0.04% and $J / \psi \rightarrow I^{+} I^{-}$is 12\%
- High-resolution and large-coverage detector

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles
- Asymmetric colliders ($E_{\text {beam } 1} \neq E_{\text {beam } 2}$)
- High luminosity
- e.g.: Branching ratio of $B^{0} \rightarrow J / \psi K_{S}^{0}$ is 0.04% and $J / \psi \rightarrow I^{+} I^{-}$is 12\%
- Millions of $B \bar{B}$ pairs needed $\rightarrow: \sim 30 \mathrm{fb}$
- High-resolution and large-coverage detector

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles
- Asymmetric colliders ($E_{\text {beam1 }} \neq E_{\text {beam } 2}$)
- High luminosity
- e.g.: Branching ratio of $B^{0} \rightarrow J / \psi K_{S}^{0}$ is 0.04% and $J / \psi \rightarrow I^{+} I^{-}$is 12\%
- Millions of $B \bar{B}$ pairs needed $\rightarrow: \sim 30 \mathrm{fb}$
- High-resolution and large-coverage detector

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles
- Asymmetric colliders ($E_{\text {beam } 1} \neq E_{\text {beam } 2}$)
- High luminosity
- e.g.: Branching ratio of $B^{0} \rightarrow J / \psi K_{S}^{0}$ is 0.04% and $J / \psi \rightarrow I^{+} I^{-}$is 12\%
- Millions of $B \bar{B}$ pairs needed $\rightarrow: \sim 30 \mathrm{fb}$
- High-resolution and large-coverage detector
- Excellent resolution and PID

CP asymmetry proportional to detectors ability to reconstruct and flavour-tag the accompanying B meson

Requirements for a B Factory

- Usually, $b-\bar{b}$ created together $(\Upsilon(4 S))$
- Both of them need to be detected and at least one reconstructed
- Boosted B / \bar{B} pairs: sufficiently long decay lengths to detect daughter particles
- Asymmetric colliders ($E_{\text {beam } 1} \neq E_{\text {beam } 2}$)
- High luminosity
- e.g.: Branching ratio of $B^{0} \rightarrow J / \psi K_{S}^{0}$ is 0.04% and $J / \psi \rightarrow I^{+} I^{-}$is 12\%
- Millions of $B \bar{B}$ pairs needed $\rightarrow: \sim 30 \mathrm{fb}$
- High-resolution and large-coverage detector
- Excellent resolution and PID
- $C P$ asymmetry proportional to detectors ability to reconstruct and flavour-tag the accompanying B meson

Heroes of the age of flavour

- BaBar and Belle: asymmetric beams, clean environment - CDF and D0: general purpose, b-phys in hadron collision - ATLAS and CMS: High p_{T} experiments, b-phys with dilepton final states
- LHCb: dedicated experiment for b- and c-physics at the LHC

Heroes of the age of flavour

- BaBar and Belle: asymmetric beams, clean environment

- CDF and D0: general purpose, b-phys in hadron collision
- ATLAS and CMS: High p_{T} experiments, b-phys with dilepton final states
- LHCb: dedicated experiment for b- and c-physics at the LHC

Heroes of the age of flavour

- BaBar and Belle: asymmetric beams, clean environment
- CDF and DO: general purnose, b-phys in hadron collision
- ATLAS and CMS: High p_{T} experiments, b-phys with dilepton final states
- LHCb: dedicated experiment for b- and c-physics at the LHC

Heroes of the age of flavour

- BaBar and Belle: asymmetric beams, clean environment
- CDF and DO: general purnose, b-phys in hadron collision
- ATLAS and CMS: High p_{T} experiments, b-phys with dilepton final states
- LHCb: dedicated experiment for b- and c-physics at the LHC

The Asymmetric B Factories

Belle

- Experiment operation: 1999-2010
- The High Energy Accelerator Research Organization (KEK) Tsukuba, Ibaraki Prefecture, Japan
- $e^{-} e^{+}$collisions ($E_{e^{+}}=3.5 \mathrm{GeV}$, $E_{e^{-}}=8.0 \mathrm{GeV}$)

Belle Detector

- A world-record luminosity of $2.1 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- More than $1 \mathrm{ab}^{-1}$ of data over various bottomonium resonances
- The world largest sample of $\Upsilon(2 S), \Upsilon(4 S), \Upsilon(5 S)$
- From $\Upsilon(4 S) \rightarrow 772 \cdot 10^{6}$ of $B \bar{B}$ pairs

The Asymmetric B Factories

BABAR

- Experiment operation: 1999-2008
- Positron-Electron Project (PEP)
- $e^{-} e^{+}$collisions ($E_{e^{+}}=$ $3.1 \mathrm{GeV}, E_{e^{-}}=9.0$ GeV)

The Asymmetric B Factories

BABAR

- Experiment operation: 1999-2008
- Positron-Electron Project (PEP)
- $e^{-} e^{+}$collisions ($E_{e^{+}}=$ $3.1 \mathrm{GeV}, E_{e^{-}}=9.0$ GeV)

Belle Detector

Instrumented Flux Return Identification of muons and
neutral hadrons
μ efficiency $>85 \%$,
π misid $\sim 4 \%$ at $p>1.5 \mathrm{GeV}$
Cherenkov Detector (DIRC)
Particle identification π / K separation $>3.4 \sigma$ at $\mathrm{p}<3.5 \mathrm{GeV}$

Solenoid 1.5 T

ectromagnetic Calorimeter 6580 CsI(TI) crystals
Electron and photon energy
measurement $\sigma(\mathrm{E}) / \mathrm{E}=1.4 \% \mathrm{E}^{-1 / 4} \oplus 2.2 \%$

Silicon Vertex Tracker

5 layers of double-sided Si-strip detectors Vertex reconstruction, tracking $+\mathrm{dE} / \mathrm{dx}$ Efficiency ~ 97\%

Drift chamber

40 layers, momentum measurement for charged particles and $\mathrm{dE} / \mathrm{dx}$ $\sigma\left(\mathrm{p}_{\mathrm{T}}\right) / \mathrm{p}_{\mathrm{T}}=0.13 \% \mathrm{p}_{T} \oplus 0.45 \%$

B-Physics Factories Luminosity

B-Physics Factories Observations

B-Physics Factories Observations

Observation of CP violation in B-meson system

- Measuring time dependent CP asymmetry

$$
A_{C P}(\Delta t)=\frac{\Gamma\left(\bar{B}^{0} \rightarrow f\right)-\Gamma\left(B^{0} \rightarrow f\right)}{\Gamma\left(\bar{B}^{0} \rightarrow f\right)+\Gamma\left(B^{0} \rightarrow f\right)}=-n_{f} \sin (2 \beta) \sin \left(\Delta m_{d} t\right)
$$

- n_{f} : CP-eigenvalue of f
- $n_{f}=-1$ for $J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}$
- $n_{f}=+1$ for $J / \psi K_{L}^{0}$
- CKM unitarity triangle angle:

$$
\sin 2 \beta=0.99 \pm 0.14 \pm 0.06
$$

B-Physics Factories Observations

B-Physics Factories Observations

Observation of $b \rightarrow d \gamma$

- SM: FCNC forbidden
- loop-induced FCNC possible $(b \rightarrow s, b \rightarrow d)$ - penguin diagram
- Radiative penguin decays: charged particle emits an external real photon
- Photon energy in $\Upsilon(4 S)$ c.m.: $1.8-3.4 \mathrm{GeV}$

$$
\frac{\mathcal{B}(B \rightarrow(\rho, \omega) \gamma)}{\mathcal{B}\left(B \rightarrow K^{*} \gamma\right)}=0.0284 \pm 0.0050
$$

- First measurement of the direct $C P$-violating asymmetry for ${ }_{27} \operatorname{BB}_{4}^{\frac{1}{2}} \rightarrow \rho^{+} \gamma$

B-Physics Factories Observations

Observation of $b \rightarrow d \gamma$

B-Physics Factories Observations

Evidence for D^{0} mixing

- D system is the one that shows the smallest mixing
- Measuring the quantity

$$
y_{C P}=\frac{\tau\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}{\tau\left(D^{0} \rightarrow K^{+} K^{-}\right)}-1
$$

- Can be shown:

$$
y_{C P}=y \cos \phi-\frac{1}{2} A_{M x} \times \sin \phi
$$

B-Physics Factories Observations

Evidence for D^{0} mixing

B-Physics Factories Observations

Evidence for D^{0} mixing

- D system is the one that shows the smallest mixing
- Measuring the quantity

$$
y_{C P}=\frac{\tau\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}{\tau\left(D^{0} \rightarrow K^{+} K^{-}\right)}-1
$$

- Can be shown:

$$
y_{C P}=y \cos \phi-\frac{1}{2} A_{M} x \sin \phi
$$

- Violation observed

$$
y_{C P}=0.0131 \pm 0.0032 \pm 0.0025
$$

- Asymmetry also observed:

$$
A=0.0001 \pm 0.0030 \pm 0.0015
$$

Next Generation B factories

Next Generation B factories

- Why we need higher luminosity?
- target given by the physics community: $50 \mathrm{ab}^{-1}$
- If old KEKB used:
- $2.1 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- $0.3 \mathrm{ab}^{-1} /$ year
- 167 years
- How to get higher luminosity?

$$
L=\frac{\gamma}{2 e r_{e}}\left(1+\frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}\right) \frac{I_{ \pm} \xi_{ \pm y}}{\beta_{y}^{*}}\left(\frac{R_{L}}{R_{y}}\right)
$$

- Beam size ratio, stored current, beam-beam parameter, β, geom. corrections (crossing angle)

Next Generation B factories

$\mathrm{e}^{+} / \mathrm{e}^{-}$	KEKB	SuperKEKB
$\mathrm{E}[\mathrm{GeV}]$	$3.5 / 8.0$	$4.0 / 7.0$
$\mathrm{I}[\mathrm{A}]$	$1.6 / 1.2$	$3.6 / 2.6$
ξ	$0.13 / 0.09$	$0.09 / 0.09$
$\beta^{*} \mathrm{y}[\mathrm{mm}]$	$5.9 / 5.9$	$0.27 / 0.30$
$\beta^{*} \times[\mathrm{mm}]$	$120 / 120$	$3.2 / 2.5$
angle [mrad]	22	83
$\mathrm{~L}\left[\mathrm{~cm} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right]$	2.1×10^{34}	80×10^{34}

Next Generation B factories

SuperKEKB/Belle II

SuperKEKB

- New e^{+}source and e^{-}gun, powerful final quadrupoles

Belle II

- Reuse of the KEKB hardware as much as possible
- Minimum requirements: sustain Belle I performance
- Important improvements:
- IP and secondary vertex resolution
- K_{S} and π^{0} reconstruction efficiency
- PID in the encaps

SuperKEKB/Belle II

SuperKEKB

- New e^{+}source and e^{-}gun, powerful final quadrupoles

Belle II

- Reuse of the KEKB hardware as much as possible
- Minimum requirements: sustain Belle I performance
- Challenges:
- Higher occupancy, fake hits, noise
- Radiation damage
- Higher trigger rates: $0.5 \rightarrow 20 \mathrm{kHz}$

SuperKEKB/Belle II

Collision with nano-beam

SuperKEKB/Belle II

Belle II

Phase 1 w/o QCS/Belle II BEAST II, no VXD

Phase 3
Physics run w/ VXD

Summary

Summary

- Role of flavour physics is important
- What properties B factories need?
- Belle and BABAR detectors and successes presented
- LHCb, ATLAS, CMS active, Bellell ramping up
- Still need to improve precision - NP?

THE CONFERENCE MORNING SESSION

Back-up

CP Violation

- Parity violated - is combination of \mathcal{P} and \mathcal{C} violated?
- Strong and EM interactions: $\mathcal{C P}$ conserved
- Weak interactions: $\mathcal{C P}$ violated:
- Christenson, Cronin, Fitch and Turlay 1964
- study of two neutral K mesons in the kaon decays, K_{S}^{0} and K_{L}^{0}
- if $\mathcal{C P}$ conserved:

$$
K_{S}^{0} \rightarrow 2 \pi \quad K_{L}^{0} \rightarrow 3 \pi
$$

- $K_{L}^{0} \rightarrow 2 \pi$ observed!!
- $K^{0} \bar{K}^{0}$ oscilation, $\mathcal{C P}$ violated
- Three types of $\mathcal{C P}$ violation:
- in decay
- in mixing
- in interference of mixing and decay

$\mathcal{C P}$ Violation in Mixing

- probability of oscillation from meson to anti-meson is different from the probability of oscillation from anti-meson to meson

$$
\operatorname{Prob}\left(P^{0} \rightarrow \bar{P}^{0}\right) \neq \operatorname{Prob}\left(\bar{P}^{0} \rightarrow P^{0}\right)
$$

- Mass eigenstates are not CP eigenstates
- Charged-current semileptonic neutral meson decays $M, \bar{M} \rightarrow I^{ \pm} X$

\bar{f}

$\mathcal{C P}$ Violation in Decay

- decay amplitude of particle into the final state is different from the decay amplitude of its antiparticle into its final anti-state

$$
\Gamma(M \rightarrow f) \neq \Gamma(\bar{M} \rightarrow \bar{f})
$$

- In charged meson (and all baryon) decays, where mixing effects are absent, this is the only possible source of $\mathcal{C P}$ asymmetries

CP Violation in Interference of Mixing antiAs
 Decay

- occurs in case both meson and antimeson decay into the same final state

$$
M \rightarrow f \quad M \rightarrow \bar{M} \rightarrow f
$$

CP Violation in Interference of Mixing antlis Decay

- occurs in case both meson and antimeson decay into the same final state

$$
M \rightarrow f \quad M \rightarrow \bar{M} \rightarrow f
$$

