CP violation in $B_s \rightarrow J/\psi \phi$ in ATLAS

Radek Novotný

WEJČF 2020, Bílý Potok January 16, 2020

- $B_s^0 \rightarrow J/\psi \phi$ is used to measure CP-violation phase Φ_s potentially sensitive to New Physics
- In SM ϕ_s is related to the CKM elements and predicted with high precision $\Phi_s \simeq 2 \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)] = -0.0363^{+0.0016}_{-0.0015}$ rad

- Other quantity in B_s^0 mixing is $\Delta \Gamma_s = \Gamma_s^L \Gamma_s^H$, where Γ_s^L and Γ_s^H are the decay widths of the different mass eigenstates. $\Delta \Gamma_s$ is not sensitive to New Physics, however measurement is interesting to test a theory.
- The New Physics processes could introduce additional contributions to the box diagrams describing the B⁰_s mixing

ATLAS detector

- Inner Detector: PIX, SCT and TRT, $p_{\mathrm{T}} > 0.4\,\text{GeV},\, |\eta| < 2.5$
 - Run2: new IBL 25% improvement of time resolution with respect to Run1.
 - time resolution remains stable within increasing pileup in Run 2
- Muon Spectrometer: triggering ($|\eta| < 2.4$), precision tracking ($|\eta| < 2.7$)

Trigger system

- Events collected with mixture of triggers based on J/ψ → μ⁺μ⁻ identification, with muon p_T thresholds of either 4 GeV or 6 GeV (vary over run periods)
- No lifetime or impact parameter cut at HLT level

Data and Monte Carlo simulation samples

Data:

- 80.5 fb⁻¹ of 13 TeV pp collision data from 2015-2017
- Statistically combined with Run1 ATLAS results:
 - 4.9 fb⁻¹ (7 TeV, pp 2011)
 14.3 fb⁻¹ (8 TeV, pp 2012)

MC samples:

- Signal $B_s^0 \rightarrow J/\psi \phi$ MC events
- MC samples for peaking backgrounds $B_d^0 \rightarrow J/\psi K^{*0}$, $B_d^0 \rightarrow J/\psi K\pi$, $\Lambda_b^0 \rightarrow J/\psi Kp$
- MC samples for tagging calibration channel $B^{\pm} \rightarrow J/\psi K^{\pm}$ (systematics and cross-checks only, real data used for calibration)

Reconstruction and candidate selection

Event:

- Triggers (previous slide) and good quality data
- At least one PV formed from at least 4 ID tracks
- At least one pair of ID+MS identified $\mu^+\mu^-$

$J/\psi ightarrow \mu^+ \mu^-$

- Dimuon vertex fit $\chi^2/d.o.f. < 10$
- Three dimuon invariant mass windows for BB/BE/EE (barrel, endcap) muon combinations

 $b \to K^+ K^-$

- *p*_T(*K*) > 1 GeV
- 1008.5 MeV < m(KK) < 1030.5 MeV

$B_s^0 ightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

- $p_{\rm T}(B_s^0) > 10\,{
 m GeV}$
- Four-track vertex fit $\chi^2/d.o.f. < 3 (J/\psi$ mass constrained)
- Keep only the candidate with best vertex fit $\chi^2/d.o.f.$ in event
- 5150 MeV $< m(B_s^0) <$ 5650 MeV \rightarrow in total 3 210 429 B_s^0 candidates

Angular analysis

- $B_s^0 \rightarrow J/\psi \phi$ = pseudoscalar to vector-vector
- Final state: admixture of *CP*-odd (L = 1) and *CP*-even (L = 0, 2) states
- Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay $B^0_s \to J/\psi K^+ K^-$ contribute to the final state
- Included in the differential decay rate due to interference with the $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\psi(K^+K^-)$ decay

Figure: Angles between final state particles in transversity basis.

We perform unbinned maximum likelihood fit simultaneously for B_{c}^{0} mass, decay time and the decay angles:

$$\begin{split} \ln \mathcal{L} &= \sum_{i=1}^{N} \{ \mathbf{w}_{i} \cdot \ln(f_{s} \cdot \mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|\mathbf{Q}), \mathbf{p}_{\mathrm{T}_{i}}) \\ &+ f_{s} \cdot f_{B_{d}^{0}} \cdot \mathcal{F}_{B_{d}^{0}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|\mathbf{Q}), \mathbf{p}_{\mathrm{T}_{i}}) \\ &+ f_{s} \cdot f_{\Lambda_{b}} \cdot \mathcal{F}_{\Lambda_{b}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|\mathbf{Q}), \mathbf{p}_{\mathrm{T}_{i}}) \\ &+ (1 - f_{s} \cdot (1 + f_{B_{d}^{0}} + f_{\Lambda_{b}})) \cdot \mathcal{F}_{\mathrm{bkg}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|\mathbf{Q}), \mathbf{p}_{\mathrm{T}_{i}}))] \end{split}$$

Physics parameters

- CPV phase ϕ_s
- Decay widths: $\Delta \Gamma_s$, Γ_s
- Decay amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp}
- S-wave: $|A_{S}(0)|^{2}$, δ_{S}
- δm_s fixed to PDG

Observables

- Base observables : m_i , t_i , Ω_i
- Conditional observables per-candidate:
 - resolutions: σm_i, σt_i (B p_{Ti} dependent)
 tagging probability and method: P(B|Q)

$$\mathsf{Combinatorial background}$$
$$\mathsf{n} \ \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}} + f_{\mathrm{s}} \cdot f_{\mathcal{B}^0_{d}} \cdot \mathcal{F}_{\mathcal{B}^0_{d}} + f_{\mathrm{s}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b} + \frac{(1 - f_{\mathrm{s}} \cdot (1 + f_{\mathcal{B}^0_{d}} + f_{\Lambda_b})) \cdot \mathcal{F}_{\mathrm{bkg}}}{(1 - f_{\mathrm{s}} \cdot (1 + f_{\mathcal{B}^0_{d}} + f_{\Lambda_b})) \cdot \mathcal{F}_{\mathrm{bkg}}}) \}$$

Combinatorial background PDFs

- Mass: exponential + constant
- Time: delta-function and 3 exponentials convolved with per-candidate time resolution
- · Angles: Legendre polynomials from sidebands; fixed in the main fit

$$\begin{array}{c} \text{Peaking background} \\ \text{In } \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}} + \begin{array}{c} f_{\mathrm{s}} \cdot f_{B_d^0} + \mathcal{F}_{\mathrm{s}} \cdot f_{\mathrm{h}_b} \cdot \mathcal{F}_{\mathrm{h}_b} \\ f_{\mathrm{s}} \cdot f_{B_d^0} + f_{\mathrm{s}} \cdot f_{\mathrm{h}_b} \cdot \mathcal{F}_{\mathrm{h}_b} \end{array} + (1 - f_{\mathrm{s}} \cdot (1 + f_{B_d^0} + f_{\mathrm{h}_b})) \cdot \mathcal{F}_{\mathrm{bkg}}) \}$$

Peaking backgrounds

- Contributions from $B^0_d \to J/\psi K^{*0}$, $B^0_d \to J/\psi K\pi$ and $\Lambda^0_b \to J/\psi Kp$
- Shapes of distributions changed due to wrong mass assignment (KK)
- · PDFs extracted from MC and then fixed in the main fit
- Fractions calculated from:
 - Efficiencies and acceptance from MC
 - BR from PDG
 - Fragmentation fractions from other measurements

$$\mathsf{n} \ \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(\frac{\mathsf{I}}{\mathsf{f}_{\mathsf{s}} \cdot \mathcal{F}_{\mathsf{s}}} + \mathsf{f}_{\mathsf{s}} \cdot \mathsf{f}_{B^0_d} \cdot \mathcal{F}_{B^0_d} + \mathsf{f}_{\mathsf{s}} \cdot \mathsf{f}_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b} + (1 - \mathsf{f}_{\mathsf{s}} \cdot (1 + \mathsf{f}_{B^0_d} + \mathsf{f}_{\Lambda_b})) \cdot \mathcal{F}_{\mathsf{bkg}}) \}$$

Signal PDFs

- Mass: Gaussian with per-candidate width and scalefactor
- Time-angles: signal decay 4D function
 - Convolved with per-candidate time resolution
 - Flavour-dependent terms weighted by tagging probability P(B|Q)
 - Applied $B p_T$ dependent angular acceptance

$$\begin{array}{c} \text{Tau} \\ \text{weight} \\ \ln \mathcal{L} = \sum_{i=1}^{N} \{ \begin{array}{c} I \\ W_i \end{array} \cdot \ln(f_{s} \cdot \mathcal{F}_{s} + f_{s} \cdot f_{\mathcal{B}_{d}^{0}} \cdot \mathcal{F}_{\mathcal{B}_{d}^{0}} + f_{s} \cdot f_{\Lambda_{b}} \cdot \mathcal{F}_{\Lambda_{b}} + (1 - f_{s} \cdot (1 + f_{\mathcal{B}_{d}^{0}} + f_{\Lambda_{b}})) \cdot \mathcal{F}_{bkg}) \} \end{array}$$

Decay time correction

· Correction of bias in the proper decay time by weighting events

 $w = p_0 \cdot (1 - p_1 \cdot (\operatorname{Erf}((t - p_3)/p_2) + 1))$

- Extracted from MC separately for data periods and trigger selection
- Typically 10-20 fs , in more biased periods 70 fs

Mass-lifetime-angular fit (overview)

- Data are corrected by the decay time correction
- Mass as well as lifetime use per-candidate width and scale factor, with flavour-dependent terms weighted by tagging probability P(B|Q)
- Contributions from $B^0_d \to J/\psi K^{*0}$, $B^0_d \to J/\psi K\pi$ and $\Lambda^0_b \to J/\psi Kp$ due to wrong mass assignment (KK)
 - Efficiencies and acceptance from MC
 - BR from PDG
 - Fragmentation fractions from other measurements
- Combinatorial background for angular distribution use Legendre polynomials from sidebands; fixed in the main fit

• Opposite side tagging

• Use $b - \bar{b}$ pair correlation to infer initial signal flavour from the other B meson

 $\begin{aligned} & P_{s}(m_{i}) \cdot P_{s}(\Omega_{i}, t_{i}, | P(B|Q) |, \sigma_{t_{i}}) \cdot P_{s}(\sigma_{t_{i}}) \\ & \cdot P_{s}(| P(B|Q) |) \cdot A(\Omega_{i}, p_{T_{i}}) \cdot P_{s}(p_{T_{i}}). \end{aligned}$

 $\mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{t_{i}}, \Omega_{i}, | P(B|Q) |, p_{T_{i}}) =$

• Provide the probability of signal candidate to be B_s^0 or \overline{B}_s^0

- $b \rightarrow l$ transitions are clean tagging method
- $b \rightarrow c \rightarrow I$ and neutral B-meson oscillations dilute the tagging
- Jet-Charge
 - information from tracks in b-tagged jet, when no lepton is found
- Calibration using $B^{\pm} \rightarrow J/\psi K^{\pm}$

Flavour tagging

Tag calibration

Calibration using $B^{\pm} \rightarrow J/\psi K^{\pm}$ events (real data)

- self tagging non oscillating channel
- Di-muon candidates in range $2.8 < m(\mu\mu) < 3.4 \text{ GeV}$
- $p_{T}(\mu) > 4 \text{ GeV}, p_{T}(K^{\pm}) > 1 \text{ GeV}$
- Invariant mass in range 5.0 $< m(\mu\mu K^{\pm}) <$ 5.6 GeV
- τ(B) > 0.2 ps to reduce prompt component of the combinatorial background

• Opposite side lepton or jet, with tracks in cone $\Delta R < 0.5$

$$egin{aligned} Q = rac{\sum_{i}^{N_{t} ext{racks}} q^{i}(p_{ ext{T}}^{i})^{\kappa}}{\sum_{i}^{N_{t} ext{racks}} q^{i}(p_{ ext{T}}^{i})^{\kappa}} &
ightarrow P(Q|B^{\pm}) \qquad Q \in <-1;1> \end{aligned}$$

• The probability to tag a B_s^0 meson as containing a \bar{b} -quark:

 $P(B|Q)=rac{P(Q|B^+)}{P(Q|B^+)+P(Q|B^-)}$

Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low-p _T muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005
Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01

- Efficiency: Fraction of signals with specific tagger, $\varepsilon = \frac{N_{\text{tagged}}}{N_{\text{result}}}$
- **Dilution**: D = (1 2w), where *w* is the miss-tag probability
- Tagging Power: figure of merit of tagger performance
 - Depends on dilution and efficiency:

 $TP = \varepsilon D^2 = \varepsilon (1 - 2w)^2$

Tagging performance

CP violation in $B_s \rightarrow J/\psi \phi$ in ATLAS, January 16, 2020

Projection and results of the mass-lifetime-angular fit

CP violation in $B_s \rightarrow J/\psi \phi$ in ATLAS, January 16, 2020

Combination of the results with the previous from Run 1

- A Best Linear Unbiased Estimate (BLUE) combination is performed to combine the current result with the Run 1 measurement
- The BLUE combination uses the measured values and uncertainties of the parameters as well as the correlations between them

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
ϕ_s [rad]	-0.076	0.034	0.019
$\Delta\Gamma_s[{ m ps}^{-1}]$	0.068	0.004	0.003
$\Gamma_s[\mathrm{ps}^{-1}]$	0.669	0.001	0.001
$ A_{ }(0) ^2$	0.220	0.002	0.002
$ A_0(0) ^2$	0.517	0.001	0.004
$ A_{S} ^{2}$	0.043	0.004	0.004
δ_{\perp} [rad]	3.075	0.096	0.091
δ_{\parallel} [rad]	3.295	0.079	0.202
$\delta_{\perp} - \delta_S$ [rad]	-0.216	0.037	0.010

AS

EXPERIMENT

- Analysis of the 2015+2016+2017 ATLAS data performed
- Results combined with Run1 results
- Compatible with LHCb and CMS and the SM prediction

Comments to the results

- The $\Delta\Gamma$ and Γ_s parameters shows discrepancy with LHCb measurement.
- Lifetime measurement in other channels shows good agreement with PDG

Further improvements needed

- Fit full Run2 data with 60 fb⁻¹ data
- Fit δm_s parameter
- Include λ parameter
- Improve tagging
- Implement $m(K^+K^-)$ dependent on rapidity
- Add more channels?

400

200

0

2

3

24/27

PDG value 17.757 ± 0.021 (stat.) Weighted cands. / (0.1 ps) ATLAS 15-18 $B^0_{e} \rightarrow J/\psi \Phi^*$ 1400 (a) LHCb 17.864 ± 0.058 (stat.) 1200 + Mixed LHCb $B^0_s \rightarrow J/\psi K^+K^-$ Unmixed 1000 17.711 +0.055 (stat.) ± 0.011 (syst) LHCb $B^0_{e} \rightarrow D^-_{e} \pi^+$ 800 17.768 ± 0.023 (stat.) ± 0.006 (s 600 LHCb $B_s^0 \rightarrow D_s \mu^+ \nu_\mu X$ 17.93 ± 0.22 (stat.) ± 0.15 (svst)

t [ps]

• The oscillation frequency δm_s is important parameter of the Bs oscillation.

The predictions were that the ATLAS will be not able to measure this parameter in Run2. •

CDF

17.77 ± 0.10 (stat.) ± 0.07 (syst)

* systematic to be evaluated

17.6

17.8

18

18.2

∆ M [10¹²ħ s⁻¹]

4S EXPERIMENT

λ parameter

- The λ parameter arises from meson-antimeson mixing and the amplitudes

$$\lambda = rac{q}{
ho} rac{ar{m{A}_{f}}}{m{A}_{f}}$$

- λ is expected to be equal to 1
- The extensive change of the likelihood function

Same side tagging

- The paper is now submitted to the EPJC
- New analysis on full Run2 ongoing targeting for Moriond 2020

- The paper is now submitted to the EPJC
- New analysis on full Run2 ongoing targeting for Moriond 2020

Thanks for attention.