

The ρ^{0} meson

Vector meson

Rest Mass
$775.49 \pm 0.34 \mathrm{MeV} \Delta \boldsymbol{\Delta}$

Quark content
 $$
\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})
$$

Mean Life

$$
\sim 4.5 \times 10^{-24}
$$

The ρ^{0} meson

Vector meson

$$
\mathrm{J}^{\mathrm{P}}=1^{--}
$$

Rest Mass
$775.49 \pm 0.34 \mathrm{MeV}$
$\Delta \Delta$

Quark content
 $$
\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})
$$

Mean Life

$$
\sim 4.5 \times 10^{-24}
$$

Vector meson cross sections

Fig. 10.11 The ratio

$$
R=\frac{\text { cross-section for } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \text { hadrons }}{\text { cross-section for } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}}
$$

as a function of the total centre-of-mass energy $W=2 E$ (each beam has energy E). The curve is drawn through many measured points and represents only a rough average; however, it does reproduce the major features. The peaks are labelled by the conventional symbol representing that vector meson. The narrow peaks due to the ψ and Υ families are shown as vertical lines; the actual values of the peak cross-section are not represented. The above-BB threshold Y states are omitted. The horizontal
lines marked with quark flavours are the values expected away from resonances and
in the absence of colour.

Vector meson cross sections

Fig. 10.11 The ratio
Large ρ^{0} width

2
Overlap with ω resonance
as a function of the total centre-of-mass energy $W=2 E$ (each beam has energy E). The curve is drawn through many measured points and represents only a rough average; however, it does reproduce the major features. The peaks are labelled by the conventional symbol representing that vector meson. The narrow peaks due to the ψ and Υ families are shown as vertical lines; the actual values of the peak cross-section are not represented. The above-BB threshold Y states are omitted. The horizontal lines marked with quark flavours are the values expected away from resonances and in the absence of colour.

The photoproduction process

Photon Flux

The bigger the better. We want lots of virtual photons.
Color dipole
Ultra-periferal
collision. Virtual
photons from
one nucleus in-
teract with the
other. QCD hap-
pens here. This
is what we wan+
to probe.

Photon Flux

$$
\frac{d N_{\gamma}(\omega)}{d \omega}=\frac{2 Z^{2} \alpha}{\pi \omega}\left(X K_{0}(X) K_{1}(X)-\frac{X^{2}}{2}\left(K_{1}^{2}(X)-K_{0}^{2}(X)\right)\right.
$$

Color dipole

Coherent interaction with whole nucleus \rightarrow meson with low p_{T} and nucleus remains

Incoherent interaction with only one nucleon. \rightarrow high p_{T} meson and nucleus breakdown

Mutual Coulomb Excitation

Nuclei exchange photons and excite each other

Excited nuclei breakdown and forward neutrons at very forward rapidities

${ }^{0}$ life

$\rho(770)^{0}$ decays					
Γ_{6}	$\pi^{+} \pi^{-}$	~ 100		\%	
Γ_{7}	$\pi^{+} \pi^{-} \gamma$		9.9 ± 1.6) $\times 10^{-3}$	
Γ_{8}	$\pi^{0} \gamma$		4.7 ± 0.6) $\times 10^{-4}$	$\mathrm{S}=1.4$
Γ_{9}	$\eta \gamma$		3.00 ± 0.21) $\times 10^{-4}$	
Γ_{10}	$\pi^{0} \pi^{0} \gamma$		4.5 ± 0.8) $\times 10^{-5}$	
Γ_{11}	$\mu^{+} \mu^{-}$		4.55 ± 0.28) $\times 10^{-5}$	
Γ_{12}	$e^{+} e^{-}$		4.72 ± 0.05) $\times 10^{-5}$	
Γ_{13}	$\pi^{+} \pi^{-} \pi^{0}$		$1.01{ }_{-0.36}^{+0.54}$	4) $\times 10^{-4}$	
Γ_{14}	$\pi^{+} \pi^{-} \pi^{+} \pi^{-}$		1.8 ± 0.9) $\times 10^{-5}$	
Γ_{15}	$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$		1.6 ± 0.8) $\times 10^{-5}$	
Γ_{16}	$\pi^{0} e^{+} e^{-}$		1.2	$\times 10^{-5}$	$\mathrm{CL}=90 \%$
Γ_{17}	$\eta e^{+} e^{-}$				

Previous Research

Fitting data

The Breit-Wigner, Söding interference and momentum dependent width

$$
\begin{gathered}
B W=\frac{M_{\pi \pi} M_{\rho} \Gamma_{\rho}}{\left(M_{\rho}^{2}-M_{\pi \pi}^{2}\right)^{2}+M_{\rho}^{2} \Gamma_{\rho}^{2}} \\
I\left(M_{\pi \pi}\right)=\frac{M_{\rho}^{2}-M_{\pi \pi}^{2}}{\left(M_{\rho}^{2}-M_{\pi \pi}^{2}\right)^{2}+M_{\rho}^{2} \Gamma_{\rho}^{2}} \\
\Gamma_{\rho}=\Gamma_{0} \cdot\left(M_{\rho} / M_{\pi \pi}\right) \frac{M_{\pi \pi}^{2}-4 m_{\pi}^{2}}{\left(M_{\rho}^{2}-4 m_{\pi}^{2}\right)^{3 / 2}}
\end{gathered}
$$

Where are we now?

Thank you

Especially to those whose art and graphs and everything else I stole.

