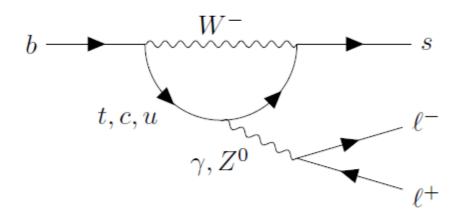
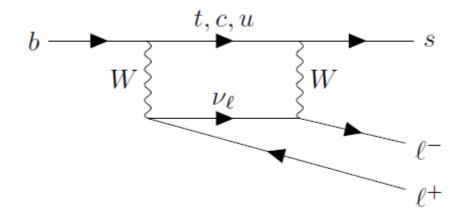

Study of the rare B-meson decays with the ATLAS experiment

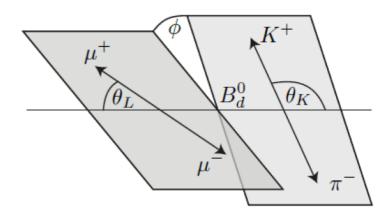

Marek Biroš


Dr. Pavel Řezníček

14. 9. 2020

Decay

$$B_d^0 \to K^* \mu^+ \mu^-$$



Analysis Folding

$$q^2 = [m(\mu^+\mu^-)]^2$$

$q^2~({\rm GeV}^2)$	$n_{ m sig}$	$n_{ m bkg}$
[0.04, 2.0]	$128_{-22}^{+22} \\ 106_{-22}^{+23}$	$122_{-21}^{+22} \\ 113_{-22}^{+23}$
[2.0, 4.0] $[4.0, 6.0]$	114_{-23}^{+24}	204_{-25}^{+26}

$$\phi$$
veto $q^2 \in [0.98, 1.10]\,\text{GeV}^2$

Angular Fit

3D differential decay rate: (4 variables, 8 parameters)

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right].$$

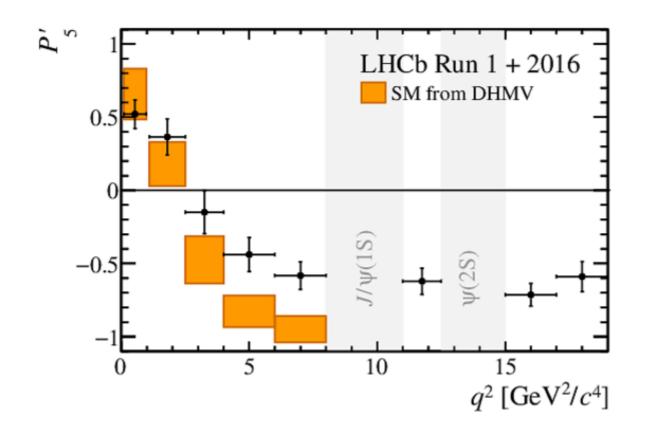
Angular Fit

3D differential decay rate: (4 variables, 8 parameters)

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right].$$

Si - large hadronic uncertainties from form-factors

→ cancel at leading order under transformations:


$$P_{1} = \frac{2S_{3}}{1 - F_{L}}$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{1 - F_{L}}$$

$$P_{3} = -\frac{S_{9}}{1 - F_{L}}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

Motivation

Angular Fit - Folding

Not enough statistics for full 3D angular fit \rightarrow fold distributions, but lost sensitivity to S_6 and S_9 (and thus also $A_{FB} = \frac{3}{4} S_6$)

$$F_{L}, S_{3}, S_{4}, P_{4}' : \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_{L} > \frac{\pi}{2} \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$F_{L}, S_{3}, S_{4}, P_{4}^{'} : \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_{L} > \frac{\pi}{2} \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{d\cos\theta_{\ell}d\cos\theta_{K}d\phi dq^{2}} = \frac{9}{8\pi} \left[\frac{3(1 - F_{L})}{4} \sin^{2}\theta_{K} + F_{L}\cos^{2}\theta_{K} + \frac{1 - F_{L}}{4} \sin^{2}\theta_{K}\cos 2\theta_{\ell} - F_{L}\cos^{2}\theta_{K}\cos 2\theta_{\ell} + S_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos 2\phi + S_{4}\sin 2\theta_{K}\sin 2\theta_{\ell}\cos \phi} \right]$$

$$\cos\theta_{L} \in [0, 1], \cos\theta_{K} \in [-1, 1] \text{ and } \phi \in [0, \pi]$$

 $\cos \theta_L \in [0, 1], \cos \theta_K \in [-1, 1] \text{ and } \phi \in [0, \pi]$

$$F_{L}, S_{3}, S_{5}, P_{5}': \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$F_{L}, S_{3}, S_{5}, P_{5}': \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$\cos \theta_{L} \in [0, 1], \cos \theta_{K} \in [-1, 1] \text{ and } \phi \in [0, \pi]$$

$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{d\cos \theta_{\ell} d\cos \theta_{K} d\phi dq^{2}} = \frac{9}{8\pi} \left[\frac{3(1 - F_{L})}{4} \sin^{2} \theta_{K} + F_{L} \cos^{2} \theta_{K} + \frac{1 - F_{L}}{4} \sin^{2} \theta_{K} \cos 2\theta_{L} - F_{L} \cos^{2} \theta_{K} \cos 2\theta_{L} + \frac{1 - F_{L}}{4} \sin^{2} \theta_{K} \cos 2\theta_{L} \right] + S_{7} \sin 2\theta_{K} \sin \theta_{L} \sin \theta_{L}$$

$$\cos \theta_{L} \in [0, 1], \cos \theta_{K} \in [-1, 1] \text{ and } \phi \in [0, \pi]$$

$$\cos \theta_L \in [0, 1], \cos \theta_K \in [-1, 1] \text{ and } \phi \in [0, \pi]$$

$$F_{L}, S_{3}, S_{7}, P_{6}': \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \frac{\pi}{2} \\ \phi \to -\pi - \phi & \text{for } \phi < -\frac{\pi}{2} \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$cos \theta_{L} \in [0, 1], cos \theta_{K} \in [-1, 1] \text{ and } \phi \in [0, \pi]$$

$$for \phi > \frac{\pi}{2}$$

$$f_{L}, S_{3}, S_{7}, P'_{6} : \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \frac{\pi}{2} \\ \phi \to -\pi - \phi & \text{for } \phi < -\frac{\pi}{2} \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$for \phi < -\frac{\pi}{2}$$

$$f_{L}, S_{3}, S_{7}, P'_{6} : \begin{cases} \phi \to \pi - \phi & \text{for } \phi < -\frac{\pi}{2} \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$for \phi < -\frac{\pi}{2}$$

 $\cos \theta_L \in [0, 1], \cos \theta_K \in [-1, 1] \text{ and } \phi \in [-\pi/2, \pi/2]$

$$F_{L}, S_{3}, S_{8}, P_{8}' : \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \frac{\pi}{2} \\ \phi \to -\pi - \phi & \text{for } \phi < -\frac{\pi}{2} \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \\ \theta_{K} \to \pi - \theta_{K} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases}$$

$$\cos \theta_{L} \in [0, 1], \cos \theta_{K} \in [-1, 1] \text{ and } \phi \in [-\pi/2, \pi/2]$$

$$F_{L}, S_{3}, S_{8}, P_{8}' : \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \frac{\pi}{2} \\ \phi \to -\pi - \phi & \text{for } \phi < -\frac{\pi}{2} \\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \frac{\pi}{2} \\ \theta_{K} \to \pi - \theta_{K} & \text{for } \theta_{L} > \frac{\pi}{2} \end{cases} = \begin{cases} \frac{9}{8\pi} \left[\frac{3(1 - F_{L})}{4} \sin^{2}\theta_{K} + F_{L}\cos^{2}\theta_{K} + \frac{1 - F_{L}}{4} \sin^{2}\theta_{K}\cos 2\theta_{\ell} + \frac{1 - F_{L}}{4}\sin^{2}\theta_{K}\cos 2\theta_{\ell} + \frac{1 - F_{L}}{4}\sin^{2$$

My Contribution to the Analysis

- Toy-MC Studies of the Angular Fit
 - validation of fitted functions
- Event Preselection
 - n-tuple creation from raw ATLAS data (derivations)
 - rough estimation of background yields after application of Run 1 cuts

My Contribution to the Analysis

- Toy-MC Studies of the Angular Fit
 - validation of fitted functions
- Event Preselection
 - n-tuple creation from raw ATLAS data (derivations)
 - rough estimation of background yields after application of Run 1 cuts

Toy-MC Studies of the Angular Fit

Positivity test:

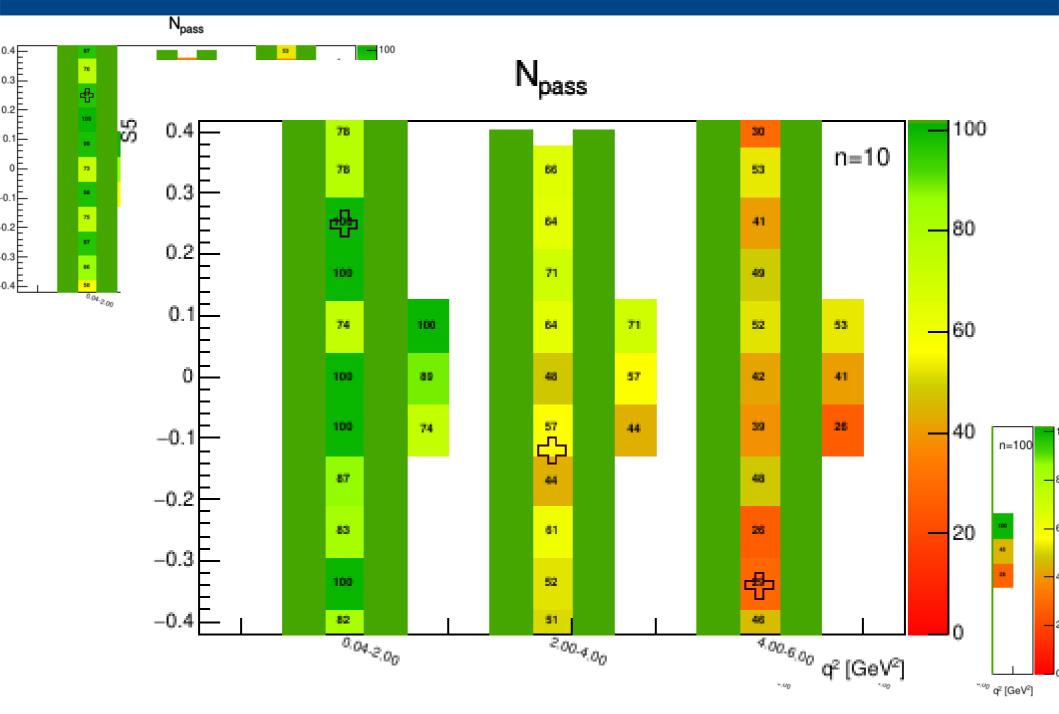
Tested functions $f_i(F_L \& S_3 \& S_i)$; $i \in 4, 5, 7, 8$ for $3 q^2$ bins 0.04-2, 2-4, 4-6 (GeV/c²)

Fit Validation:

Tested functions $f_i(F_L \& S_3 \& S_i)$; $i \in 4, 5, 7, 8$ for $3 q^2$ bins 0.04-2, 2-4, 4-6 (GeV/c²)

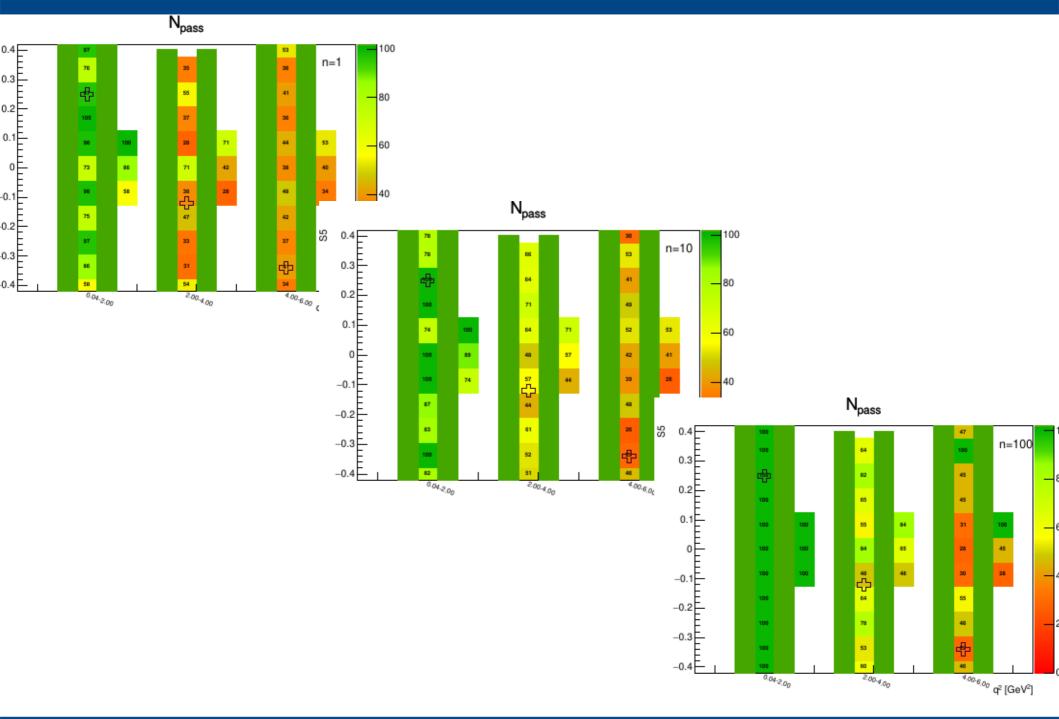
Number of events 1, 10, 100

S2B ratio 0.5, 1, 2

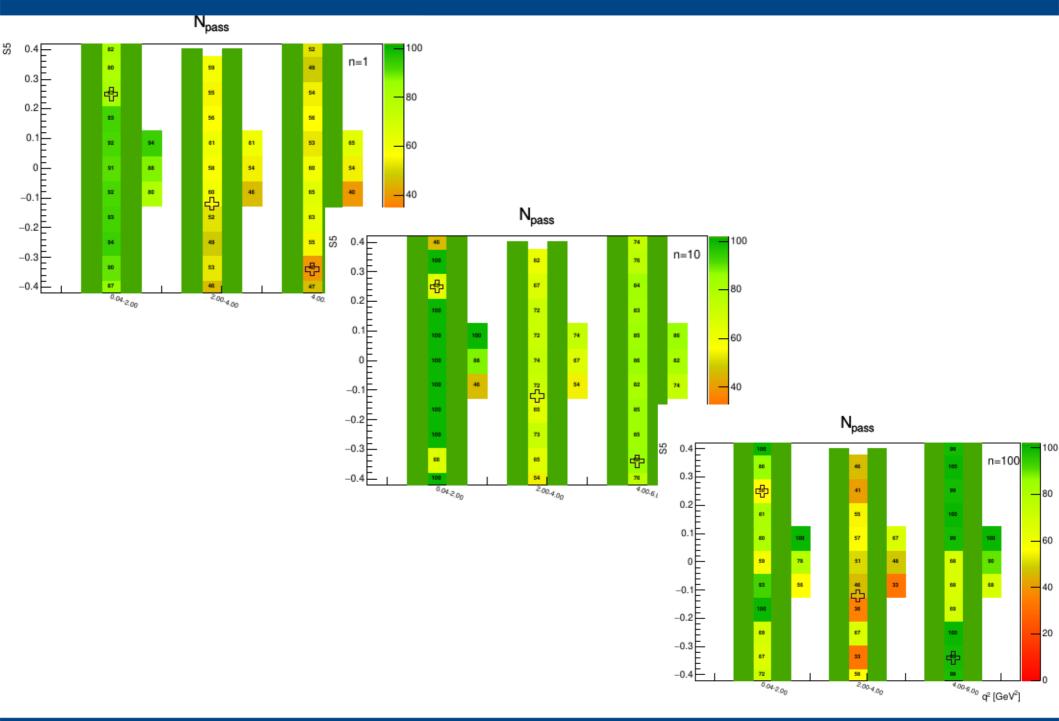

acceptance 1, from Run 1

Toy-MC Studies of the Angular Fit

- $F_L \in [0.1, 0.9]$, with step 0.09; ([0.2,0.8] for 4-6 bin of f_{S_5})
- $S_3 \in [-0.1, 0.1]$, with step 0.02; ([-0.06,0.1] for 4-6 and [-0.08,0.1] for 2-4 bin of f_{S_5})
- $S_4 \in [-0.272, 0.272]$, with step 0.068
- $S_5 \in [-0.4, 0.4]$, with step 0.08
- $S_7 \in [-0.4, 0.4]$, with step 0.08
- $S_8 \in [-0.3, 0.3]$, with step 0.06

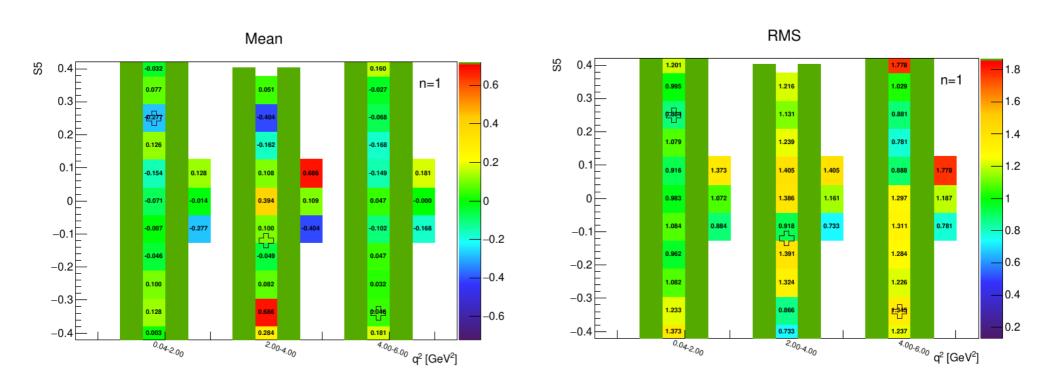

100 toy MC samples were generated and fitted for each combination.

Results f_5 , S_5 , r = 1, Acc. from RUN1



12

Results f_5 , S_5 , r = 1, Acc. from RUN1



Results f₅, S₅,r = 1, No Acc.

Results f_5 , S_5 , n = 1, r = 1, Acc. from RUN1

$$p = \frac{Y_i - Y_{init}}{\sigma_i}$$

Conclusion I - Toy-MC Studies

- Toy-MC Studies of the Angular Fit
 - Positivity range
 - Scan of the phase space of the fitted parameters (3195 combinations)
 - N_{pass} (improvement of the acceptance description needed)
 - $\sigma_{\rm fit}^{\rm mean}/\sqrt{n}$
 - Fit-bias pulls
 - Fit-errors bias pulls RMS
- Plans for future:
 - After derivation from Run 2 data, repeat MC analysis with higher number of generated samples (100->1000) for responding number of sg & bg events, with improved acceptance
 - Find threshold statistics for full fit (FL, S3, S4, S5, S7, S8 together)
 - Maybe:
 - Test if mass fit & angular fit could be done simultaneously with higher statistics (now: first mass fit, then angular fit)

My Contribution to the Analysis

- Toy-MC Studies of the Angular Fit
 - validation of fitted functions
- Event Preselection
 - n-tuple creation from raw ATLAS data (derivations)
 - rough estimation of background yields after application of Run 1 cuts

Baseline Cuts

- all four tracks, as well as the dimuon, K^* and B^0 systems, are required to be in the ID acceptance and have $|\eta| < 2.5$
- dimuon vertex fit quality $\chi^2/\text{n.d.f.} < 10$
- $p_{\rm T}(\mu) > 3500 \,{\rm MeV}$
- $p_{\rm T}(\pi/K) > 500 \,{\rm MeV}^*$
- K^* candidate mass in range [846, 946] MeV
- B^{θ} candidate mass in range [5150, 5700] MeV
 - ***** Applied during derivation

Optimized RUN1 Cuts

- $\tau/\sigma_{\tau} > 12.75$
- $p_{\rm T}(K^*) > 3000 \,{\rm MeV}$
- $\chi^2/\text{n.d.f.}(B^0) < 2$
- $\Delta m_{\rm radiative} > 130 \,\mathrm{MeV}$

$$\Delta m_{\rm rad}(c\overline{c}) = |(m_{K\pi\mu\mu} - m_{B^{\theta}}) - (m_{\mu\mu} - m_{c\overline{c}})| \quad c\overline{c} = J/\psi \text{ and } \psi(2S)$$

Signal Yield

name	$N_{ m S}$	$N_{ m B}$	N_{PASS}	$N_{ m S}$ / $N_{ m PASS}$	$N_{\mathrm{PASS}}/N_{TOT}$:
raw data	8645	66798	75443	0.11	100.00%
$ \eta _{4Btracks}$	8546	64644	73190	0.12	97.01%
dimuon vertex	5319	7052	12371	0.43	16.40%
$p_{T\mu}$	5240	6687	11927	0.44	15.81%
m_{K^*}	4102	2402	6504	0.63	8.62%
m_B	3767	637	4404	0.86	5.84%
$ au_B/\sigma_{ au_B}$	1132	454	1586	0.71	2.10%
p_{TK^*}	813	74	887	0.92	1.18%
B vertex	726	42	768	0.95	1.02%
$\Delta m_{radiative}$	522	28	550	0.95	0.73%

Table 4.4: Signal and self-background yield after the application of selection criteria for decay $B_d^0 \to K^*(K\pi)\mu^+\mu^-$.

"Antisignal" Yield

name	$N_{ m S}$	$N_{ m B}$	N_{PASS}	$N_{ m S}$ / $N_{ m PASS}$	$N_{\mathrm{PASS}}/N_{TOT}$:
raw data	8433	64221	72654	0.12	100.00%
$ \eta _{4Btracks}$	8362	62121	70483	0.12	97.01%
dimuon vertex	5313	7065	12378	0.43	17.04%
$p_{T\mu}$	5246	6719	11965	0.44	16.47%
m_{K^*}	4164	2443	6607	0.63	9.09%
m_B	3317	683	4000	0.83	5.51%
$ au_B/\sigma_{ au_B}$	998	478	1476	0.68	2.03%
p_{TK^*}	706	64	770	0.92	1.06%
B vertex	642	46	688	0.93	0.95%
$\Delta m_{radiative}$	485	25	510	0.95	0.70%

Table 4.5: Signal and self-background yield after the application of selection criteria for decay $\bar{B}_d^0 \to \bar{K}^*(K\pi)\mu^+\mu^-$.

Estimated Signal and Background Yields

decay chanel	$\eta^{ m REC}$	N_{TOT}	$\frac{N_{ m PASS}^{ m baseline}}{N_{ m TOT}}$	$\frac{N_{\mathrm{PASS}}^{\mathrm{Run1}}}{N_{\mathrm{TOT}}}$	N_{PASS}	yield
$B_d^0 \to K^*(K^+\pi^-)\mu^+\mu^-$	75.81%	75443	5.84%	0.729%	550	0.51
$\bar{B^0}_d \to \bar{K^*}(K^-\pi^+)\mu^+\mu^-$	75.81%	72654	5.51%	0.702%	510	0.49
$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$	74.76%	63052	6.12%	0.033%	21	1.8
$\bar{B}^0_d \to \bar{K}^*(K^-\pi^+)J/\psi(\mu^+\mu^-)$	74.61%	63719	5.44%	0.306%	195	17
$B_d^0 \to K^*(K^+\pi^-)\psi(2s)(\mu^+\mu^-)$	74.93%	40605	7.46%	0.039%	16	0.14
$\bar{B}^0_d \to \bar{K}^*(K^-\pi^+)\psi(2s)(\mu^+\mu^-)$	75.45%	42770	6.35%	0.426%	182	1.5
$B_d^0 \to K\pi J/\psi(\mu^+\mu^-)$	58.37%	83092	1.64%	0.043%	36	2.5
$\bar{B^0}_d \to K\pi J/\psi(\mu^+\mu^-)$	58.53%	40658	1.55%	0.079%	32	4.6
$B_d^0 \to K\pi\psi(2s)(\mu^+\mu^-)$	66.23%	39387	2.80%	0.079%	31	0.36
$\bar{B^0}_d \to K\pi\psi(2s)(\mu^+\mu^-)$	64.68%	40164	2.28%	0.132%	53	0.58
$B_s^0 \to \varphi(K^+K^-)\mu^+\mu^-$	78.13%	152231	1.09%	0.102%	155	0.016
$\bar{B^0}_s \to \varphi(K^+K^-)\mu^+\mu^-$	78.05%	50643	1.03%	0.087%	44	0.013
$B_s^0 \to \varphi(K^+K^-)J/\psi(\mu^+\mu^-)$	76.73%	47357	1.06%	0.027%	13	0.33
$\bar{B^0}_s \to \varphi(K^+K^-)J/\psi(\mu^+\mu^-)$	77.25%	45732	1.08%	0.026%	12	0.32
$B_s^0 \to \varphi(K^+K^-)\psi(2s)(\mu^+\mu^-)$	77.10%	42756	1.27%	0.042%	18	0.034
$\bar{B^0}_s \to \varphi(K^+K^-)\psi(2s)(\mu^+\mu^-)$	78.05%	43623	1.31%	0.032%	14	0.026
$B^+ \to K^+ \mu^+ \mu^-$	46.25%	68788	1.40%	0.084%	58	0.025
$B^- \to K^- \mu^+ \mu^-$	47.05%	33213	1.16%	0.018%	6	0.0055
$B^+ \to K^+ J/\psi(\mu^+ \mu^-)$	45.49%	66466	1.32%	0.113%	75	4.5
$B^- \to K^- J/\psi(\mu^+ \mu^-)$	45.67%	33183	0.95%	0.015%	5	0.61
$B^+ \to K^+ \psi(2s)(\mu^+ \mu^-)$	45.26%	58200	1.91%	0.110%	64	0.36
$B^- \to K^+ \psi(2s)(\mu^+ \mu^-)$	45.38%	27965	1.51%	0.029%	8	0.095
$B^+ o \pi^+ J/\psi(\mu^+\mu^-)$	45.94%	32698	1.02%	0.037%	12	0.057
$B^- \to \pi^- J/\psi(\mu^+ \mu^-)$	44.86%	31941	0.83%	0.013%	4	0.019

$$\eta^{\text{REC}} \equiv \frac{N_{\text{GEN}}^{\text{REC}}}{N_{\text{GEN}}}$$

BR_{μ}					
J/ψ	0.06				
$\psi(2s)$	10^{-3}				
η	10^{-6}				

Asymmetry – bad reconstruction of B mass

cut	N_{PASS}	N_{PASS}/N_{TOT}	cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	63052	100.00%	raw data	63719	100.00%
$ \eta _{4Btracks}$	61376	97.34%	$ \eta _{4Btracks}$	61848	97.06%
dimuon vertex	11010	17.46%	dimuon vertex	10963	17.21%
$p_{T\mu}$	10575	16.77%	$p_{T\mu}$	10592	16.62%
m_{K^*}	5777	9.16%	m_{K^*}	5861	9.20%
$ m_B$	3858	6.12%	m_B	3466	5.44%
$ au_B/\sigma_{ au_B}$	1353	2.15%	$ au_B/\sigma_{ au_B}$	1259	1.98%
p_{TK^*}	758	1.20%	p_{TK^*}	709	1.11%
B vertex	664	1.05%	B vertex	619	0.97%
$\Delta m_{radiative}$	21	0.03%	$\Delta m_{radiative}$	195	0.31%

$$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$$
 $\bar{B^0}_d$

$$\bar{B^0}_d \to \bar{K^*}(K^-\pi^+)J/\psi(\mu^+\mu^-)$$

$$\Delta m_{\rm rad}(c\overline{c}) = |(m_{K\pi\mu\mu} - m_{B^{\theta}}) - (m_{\mu\mu} - m_{c\overline{c}})|$$

Marek Biroš

23

Conclusion II – Event preselection

Event preselection

- n-tuple maker with simple kinematic variables
- Rough background estimation after application of cuts from Run 1
- Asymmetry between decay and CP-conjugated decay yields
- After correction on asymmetry 12 bg events : 1 sg

Plan for future:

- Complete n-tuple (add trigger info, candidate info and true MC info)
- Event selection cut/BDT optimization

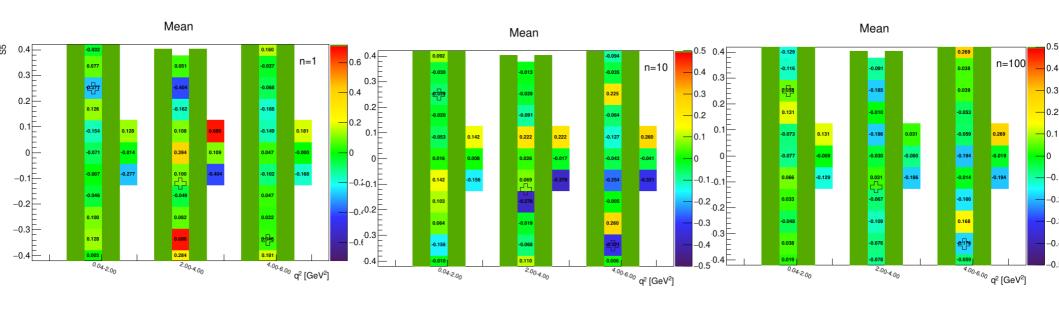
Thank you for your attention

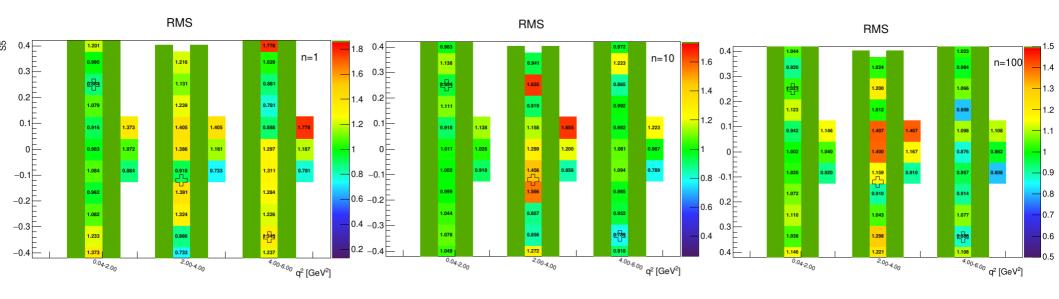
Backup

Tau cut

name	$N_{ m S}$	$N_{ m B}$	N_{PASS}	$N_{ m S}$ / $N_{ m PASS}$	$N_{\rm PASS}/N_{TOT}$:
raw data	8645	66798	75443	0.11	100.00%
$ \eta _{4Btracks}$	8546	64644	73190	0.12	97.01%
dimuon vertex	5319	7052	12371	0.43	16.40%
$p_{T\mu}$	5240	6687	11927	0.44	15.81%
m_{K^*}	4102	2402	6504	0.63	8.62%
m_B	3767	637	4404	0.86	5.84%
$ au_B/\sigma_{ au_B}$	1132	454	1586	0.71	2.10%
p_{TK^*}	813	74	887	0.92	1.18%
B vertex	726	42	768	0.95	1.02%
$\Delta m_{radiative}$	522	28	550	0.95	0.73%

Tau cut


•


name	$N_{ m S}$	$N_{ m B}$	N_{PASS}	$N_{ m S}$ / $N_{ m PASS}$	$N_{\rm PASS}/N_{TOT}$:
m_B	3767	637	4404	0.86	5.84%
$\tau_B/\sigma_{ au_B}$	1132	454	1586	0.71	2.10%

• The lifetime cut prefers the long-lived B-mesons and suppresses some short-lived hadrons. (\mathbf{X})

• Combinatorial background: $pp/cc/bb \rightarrow X \mu\mu$

Results f_5 , S_5 , r = 1, Acc. from RUN1

Asymmetry

decay chanel	$\eta^{ m REC}$	N_{TOT}	$\frac{N_{ m PASS}^{ m baseline}}{N_{ m TOT}}$	$\frac{N_{\mathrm{PASS}}^{\mathrm{Run1}}}{N_{\mathrm{TOT}}}$	N_{PASS}	yield
$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$	74.76%	63052	6.12%	0.033%	21	1.8
$\bar{B^0}_d \to \bar{K^*}(K^-\pi^+)J/\psi(\mu^+\mu^-)$	74.61%	63719	5.44%	0.306%	195	17

Asymmetry - low statistics

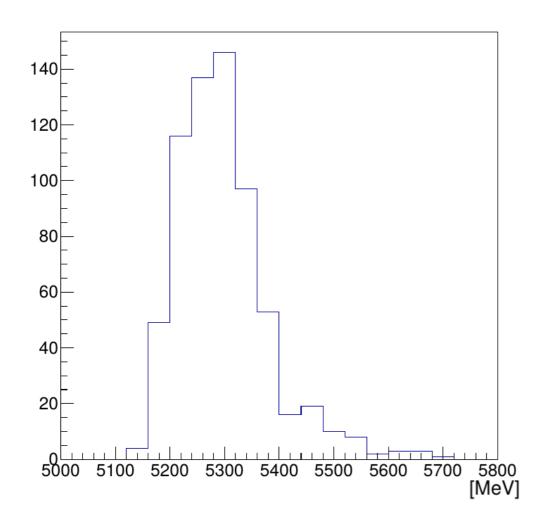
decay chanel	$\eta^{ m REC}$	N_{TOT}	$\frac{N_{\mathrm{PASS}}^{\mathrm{baseline}}}{N_{\mathrm{TOT}}}$	$\frac{N_{ m PASS}^{ m Run1}}{N_{ m TOT}}$	$N_{ m PASS}$	yield
$B_d^0 \to K^*(K^+\pi^-)\mu^+\mu^-$	75.81%	75443	5.84%	0.729%	550	0.51
$\bar{B^0}_d \to \bar{K}^*(K^-\pi^+)\mu^+\mu^-$	75.81%	72654	5.51%	0.702%	510	0.49
$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$	74.76%	63052	6.12%	0.033%	21	1.8
$\bar{B}^0{}_d \to \bar{K}^*(K^-\pi^+)J/\psi(\mu^+\mu^-)$	74.61%	63719	5.44%	0.306%	195	17
$B_d^0 \to K^*(K^+\pi^-)\psi(2s)(\mu^+\mu^-)$	74.93%	40605	7.46%	0.039%	16	0.14
$\bar{B}^0_d \to \bar{K}^*(K^-\pi^+)\psi(2s)(\mu^+\mu^-)$	75.45%	42770	6.35%	0.426%	182	1.5
$B_d^0 \to K\pi J/\psi(\mu^+\mu^-)$	58.37%	83092	1.64%	0.043%	36	2.5
$\bar{B^0}_d \to K\pi J/\psi(\mu^+\mu^-)$	58.53%	40658	1.55%	0.079%	32	4.6
$B_d^0 \to K\pi\psi(2s)(\mu^+\mu^-)$	66.23%	39387	2.80%	0.079%	31	0.36
$\bar{B}^0{}_d \to K\pi\psi(2s)(\mu^+\mu^-)$	64.68%	40164	2.28%	0.132%	53	0.58
$B_s^0 \to \varphi(K^+K^-)\mu^+\mu^-$	78.13%	152231	1.09%	0.102%	155	0.016
$\bar{B^0}_s \to \varphi(K^+K^-)\mu^+\mu^-$	78.05%	50643	1.03%	0.087%	44	0.013
$B_s^0 \to \varphi(K^+K^-)J/\psi(\mu^+\mu^-)$	76.73%	47357	1.06%	0.027%	13	0.33
$\bar{B^0}_s \to \varphi(K^+K^-)J/\psi(\mu^+\mu^-)$	77.25%	45732	1.08%	0.026%	12	0.32
$B_s^0 \to \varphi(K^+K^-)\psi(2s)(\mu^+\mu^-)$	77.10%	42756	1.27%	0.042%	18	0.034
$\bar{B^0}_s \to \varphi(K^+K^-)\psi(2s)(\mu^+\mu^-)$	78.05%	43623	1.31%	0.032%	14	0.026
$B^+ \to K^+ \mu^+ \mu^-$	46.25%	68788	1.40%	0.084%	58	0.025
$B^- \rightarrow K^- \mu^+ \mu^-$	47.05%	33213	1.16%	0.018%	6	0.0055
$B^+ \to K^+ J/\psi(\mu^+ \mu^-)$	45.49%	66466	1.32%	0.113%	75	4.5
$B^- \to K^- J/\psi(\mu^+\mu^-)$	45.67%	33183	0.95%	0.015%	5	0.61
$B^+ \to K^+ \psi(2s)(\mu^+ \mu^-)$	45.26%	58200	1.91%	0.110%	64	0.36
$B^- \to K^+ \psi(2s)(\mu^+ \mu^-)$	45.38%	27965	1.51%	0.029%	8	0.095
$B^+ \to \pi^+ J/\psi(\mu^+\mu^-)$	45.94%	32698	1.02%	0.037%	12	0.057
$B^- \to \pi^- J/\psi(\mu^+ \mu^-)$	44.86%	31941	0.83%	0.013%	4	0.019

Marek Biroš

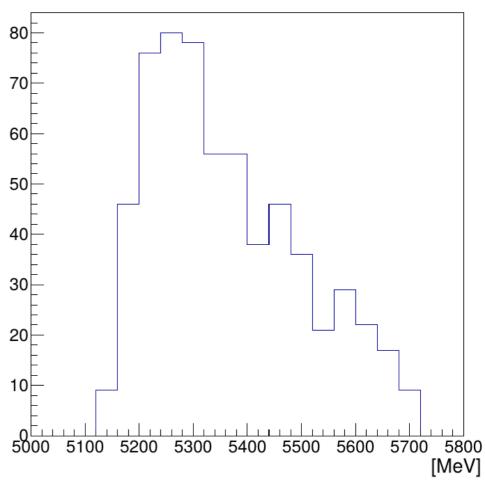
31

Asymmetry - B mass

cut	N_{PASS}	N_{PASS}/N_{TOT}	cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	63052	100.00%	raw data	63719	100.00%
$ \eta _{4Btracks}$	61376	97.34%	$ \eta _{4Btracks}$	61848	97.06%
dimuon vertex	11010	17.46%	dimuon vertex	10963	17.21%
$p_{T\mu}$	10575	16.77%	$p_{T\mu}$	10592	16.62%
m_{K^*}	5777	9.16%	m_{K^*}	5861	9.20%
m_B	3858	6.12%	m_B	3466	5.44%
$ au_B/\sigma_{ au_B}$	1353	2.15%	$ au_B/\sigma_{ au_B}$	1259	1.98%
p_{TK^*}	758	1.20%	p_{TK^*}	709	1.11%
B vertex	664	1.05%	B vertex	619	0.97%
$<\!$	21	0.03%	$\Delta m_{radiative}$	195	0.31%

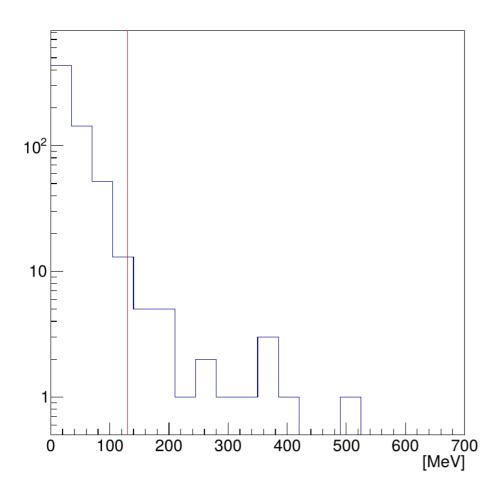

$$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$$
 $\bar{B^0}_d \to \bar{K}^*(K^-\pi^+)J/\psi(\mu^+\mu^-)$

$$\Delta m_{\rm rad}(c\overline{c}) = |(m_{K\pi\mu\mu} - m_{B^0}) - (m_{\mu\mu} - m_{c\overline{c}})|$$

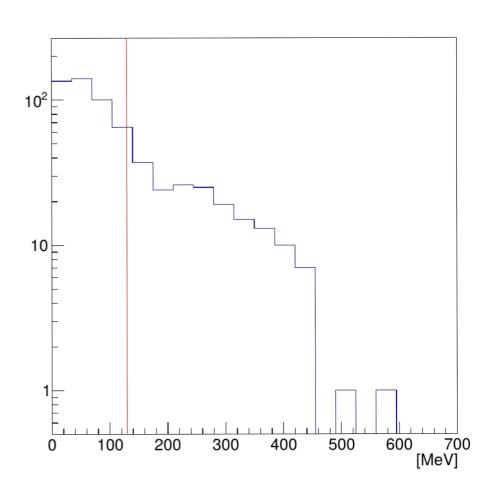

Marek Biroš

32

Asymmetry - B mass before last cut



$$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$$



$$\bar{B^0}_d \to \bar{K^*}(K^-\pi^+)J/\psi(\mu^+\mu^-)$$

Asymmetry - Δm before cut

$$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$$

$$\bar{B^0}_d \to \bar{K^*}(K^-\pi^+) J/\psi(\mu^+\mu^-)$$

Asymetry - without B mass cut

cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	63052	100.00%
$ \eta _{4Btracks}$	61376	97.34%
dimuon vertex	11010	17.46%
$p_{T\mu}$	10575	16.77%
m_{K^*}	5777	9.16%
$ au_B/\sigma_{ au_B}$	2699	4.28%
p_{TK^*}	1011	1.60%
B vertex	830	1.32%
$\Delta m_{radiative}$	113	0.18%

cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	63719	100.00%
$ \eta _{4Btracks}$	61848	97.06%
dimuon vertex	10963	17.21%
$p_{T\mu}$	10592	16.62%
m_{K^*}	5861	9.20%
$ au_B/\sigma_{ au_B}$	2718	4.27%
p_{TK^*}	1045	1.64%
B vertex	861	1.35%
$\Delta m_{radiative}$	372	0.58%

$$B_d^0 \to K^*(K^+\pi^-)J/\psi(\mu^+\mu^-)$$

$$\bar{B^0}_d o \bar{K^*}(K^-\pi^+)J/\psi(\mu^+\mu^-)$$

$$\Delta m_{\rm rad}(c\overline{c}) = |(m_{K\pi\mu\mu} - m_{B^0}) - (m_{\mu\mu} - m_{c\overline{c}})|$$

Asymmetry - charged

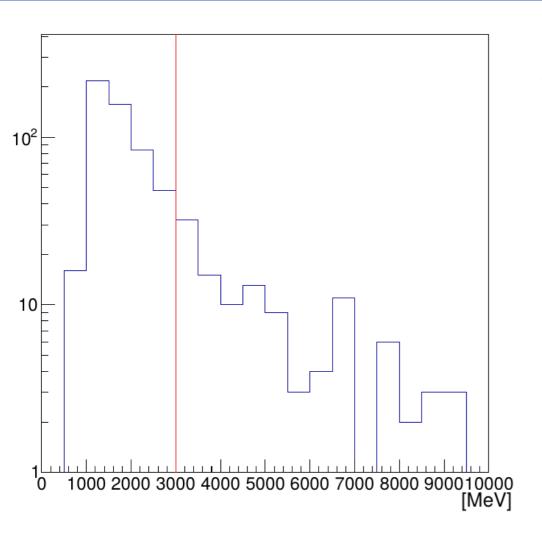
cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	68788	100.00%
$ \eta _{4Btracks}$	66656	96.90%
dimuon vertex	10131	14.73%
$p_{T\mu}$	9628	14.00%
m_{K^*}	3514	5.11%
$ m_B$	961	1.40%
$ au_B/\sigma_{ au_B}$	643	0.93%
$\sum_{\mathcal{D}TK^*}$	119	0.17%
B vertex	71	0.10%
$\Delta m_{radiative}$	58	0.08%

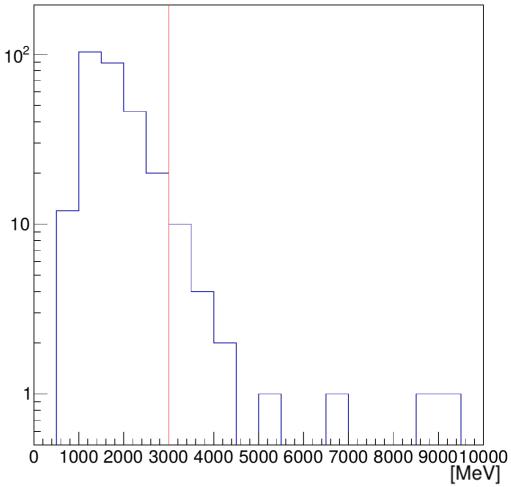
cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	33213	100.00%
$ \eta _{4Btracks}$	32131	96.74%
dimuon vertex	5195	15.64%
$p_{T\mu}$	4991	15.03%
m_{K^*}	1717	5.17%
m_B	385	1.16%
$ au_B/\sigma_{ au_B}$	292	0.88%
p_{TK^*}	22	0.07%
B vertex	8	0.02%
$\Delta m_{radiative}$	6	0.02%

$$B^+ \to K^+ \mu \mu$$

$$B^- \to K^- \mu \mu$$

Asymmetry - without B mass cut

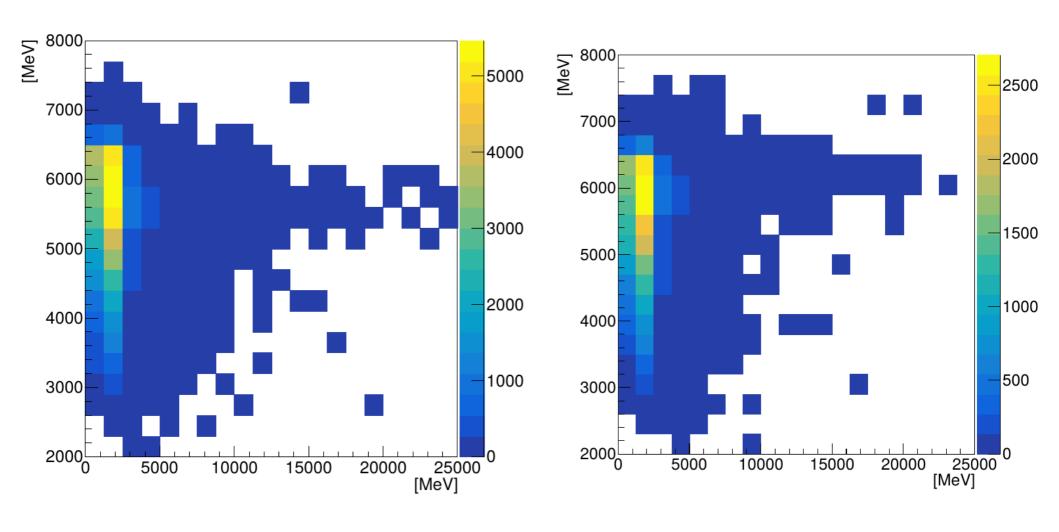

cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	68788	100.00%
$ \eta _{4Btracks}$	66656	96.90%
dimuon vertex	10131	14.73%
$p_{T\mu}$	9628	14.00%
m_{K^*}	3514	5.11%
$ au_B/\sigma_{ au_B}$	2806	4.08%
p_{TK^*}	346	0.50%
B vertex	189	0.27%
$\Delta m_{radiative}$	150	0.22%


cut	N_{PASS}	N_{PASS}/N_{TOT}
raw data	33213	100.00%
$ \eta _{4Btracks}$	32131	96.74%
dimuon vertex	5195	15.64%
$p_{T\mu}$	4991	15.03%
m_{K^*}	1717	5.17%
$ au_B/\sigma_{ au_B}$	1366	4.11%
p_{TK^*}	173	0.52%
B vertex	82	0.25%
$\Delta m_{radiative}$	67	0.20%

$$B^+ \to K^+ \mu \mu$$

$$B^- \to K^- \mu \mu$$

Asymmetry -



$$B^+ \to K^+ \mu \mu$$

$$B^- \to K^- \mu \mu$$

Ad 2)

$$B^+ \to K^+ \mu \mu$$

$$B^- \to K^- \mu \mu$$

Asymmetry - combined

	cut	N_{PASS}	N_{PASS}/N_{TOT}	cut	N_{PASS}	N_{PASS}/N_{TOT}
	raw data	66466	100.00%	raw data	33183	100.00%
Ì	$ \eta _{4Btracks}$	64275	96.70%	$ \eta _{4Btracks}$	32118	96.79%
	dimuon vertex	10103	15.20%	dimuon vertex	5038	15.18%
	$p_{T\mu}$	9605	14.45%	$p_{T\mu}$	4826	14.54%
1	m_{K^*}	3380	5 09%	m_{K^*}	1668	5.03%
4	m_B	876	1.32%	m_B	314	0.95%
	$ au_B/\sigma_{ au_B}$	630	0.95%	$ au_B/\sigma_{ au_B}$	266	0.80%
4	p_{TK^*}	111	0.17%	p_{TK^*}	20	0.06%
1	B vertex	85	0.13%	B vertex	14	0.04%
4	$\Delta m_{radiative}$	75	0.11%	$\Delta m_{radiative}$	5	0.02%

$$B^+ \to K^+ J/\psi(\mu^+ \mu^-)$$
 $B^- \to K^- J/\psi(\mu^+ \mu^-)$