Phase stability of actinide carbides

Author: J. Oprštěný Supervisor: D. Legut

VSB TECHNICAL | TT4TNNOVATIONS ЦШ OF OSTRAVA | CENTER

UNIVERSITY | NATIONAL SUPERCOMPUTING

What do we do?

- prospective nuclear fuels for IV. generation nuclear reactors
- calculating materials properties using quantum mechanical calculations
 - experimental research too expensive

What are we interested in?

- 5f-electrons behavior
 - not localized but itinerant, especially at high temperatures
 - possible study of other 5f compounds
- nuclear fuels
 - heat capacity, thermal conductivity

Motivation

- \bullet there was only one study 1 that calculated energy volume curves and elastic constants of U_2C_3
- No Th_2C_3 in phase diagram of thorium carbides
 - $\bullet~{\rm Krupka^2}$ managed to sythesize ${\rm Th_2C_3}$ only under high pressure

Questions

- What is the magnetic order of our compounds?
- What is the effect of spin-orbital coupling?
- What is the electronic structure of the phases?
- Is Th₂C₃ stable at ambient pressure?
- What is the best way to model properties of selected structures?

¹H. Shi et al., J. Nucl. Mater., 396, 218-222 (2010).

²M. C. Krupka, J. Less-Common Metals 20, 135-140 (1970).

Uranium Sesquicarbide

Available experimental data

- Cubic, space group 220 (I-43d), Pu_2C_3 type¹
- Lattice parameter^{1,2}, density^{3,4}, C - C bond length^{5,6}
- Thermal conductivity⁴ for $T = 1000 2200 \,\mathrm{K}$
- Thermal expansion 7,8 for $T\,=\,1300-2000\,{\rm K}$
- Thermodynamic properties (e. g. heat capacity^{8,9} for 0 - 330 K)

¹W. B. Wilson, J. Am. Ceram. Soc., 43, 77-81 (1960).

²J. F. A. Hennecke and C. J. Toussaint, J. Appl. Crystallogr. 2, 301 (1969).

³M. W. Mallett et al., J. Electrochem. Soc. 98, 12 1961., ⁴R. De Coninck et al., J. Nucl. Mater., 46, 213-216 (1973).

⁵A. E. Austin, Acta Cryst., 12, 159-161 (1959)., ⁶H. Shi et al., J. Nucl. Mater., 396, 218-222 (2010).

⁷R. De Coninck et al., J. Nucl. Mater., 46, 213-216 (1973)., ⁸R. J. L. Andon et al., Trans. Faraday Soc., 60, 1030-1037 (1964).
⁹J. M. Leitnaker and T. G. Godfrey, J. Nucl. Mater., 21, 175-189 (1967).

Methodology

- Born-Oppenheimer approximation
 - calculations include only electrons, not atomic cores
- we calculate electron density¹, not electron wavefunctions
- SCF Self-Consistent Field
 - iterative method

Density Functional Theory (DFT)

- potential of all particles can be rewritten as electron density¹
- Kohn-Sham orbitals² orbitals close to real ones
 - one electron in the field of other electrons
 - variation principle there is only one density that corresponds to global energy minimum

¹Hohenberg, P. and Kohn, W., Phys. Rev. B, 136, *B*864-& (1964). ²Kohn, W. and Sham, LJ, Phys. Rev., 140, 1133-& (1965).

Results - Ground-State Properties

¹W. B. Wilson, J. Am. Ceram. Soc., 43, 77-81 (1960).

² J. F. A. Hennecke and C. J. Toussaint, J. Appl. Crystallogr. 2, 301 (1969).

 $^{3}\,\text{H}.$ Shi et al., J. Nucl. Mater., 396, 218-222 (2010).

⁴M. C. Krupka, J. Less-Common Metals 20, 135-140 (1970).

Results - Enthalpy of Formation

- $\bullet~$ Both U_2C_3 and Th_2C_3 are stable at 0 $\rm K$ and ambient pressure
- $\mathsf{U}_2\mathsf{C}_3$ is ferromagnetic while magnetism plays no role in $\mathsf{Th}_2\mathsf{C}_3$'s enthalpy of formation

¹I. Grenthe et al., *The Chemistry of the Actinide and Transactinide Elements* (Springer, Dordrecht, 2008).

²Premo Chiotti, J. Electrochem. Soc. 110, 567-570 (1954).

³M. E. Straumanis and E. Z. Aka, J. Am. Chem. Soc. 73, 5643-5646 (1951).

Mechanical Properties

• for a cubic system, there are three independent elastic constants¹

$$C_{cubic} = \begin{vmatrix} c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\ c_{11} & c_{12} & 0 & 0 & 0 \\ c_{11} & 0 & 0 & 0 \\ c_{11} & 0 & 0 & 0 \\ c_{44} & 0 & 0 \\ c_{44} & 0 \\ c_{4$$

Young's modulus¹ - materials resistance to uniaxial deformation
E = (c₁₁-c₁₂)(c₁₁+2c₁₂)/(c₁₁+2c₁₂)/(c₁₁+c₁₂)

• Shear modulus¹ - materials resistance to shear stress

•
$$G = c_{44}$$

• Bulk modulus¹ - materials resistance to compression

•
$$B = \frac{c_{11}+2c_{12}}{3}$$

¹G. Grimvall, *Thermophysical Properties of Materials* (Elsevier, North-Holland, Amsterdam, 1999).

Results - Mechanical Properties

• Born's elastic stability conditions¹ for cubic system

•
$$(c_{11} > |c_{12}|) \land (c_{44} > 0)$$

- Pugh ratio² $\frac{G}{B}$ brittle to ductile border at 0.57
- Zener anisotropy $^{1}A_{Z}$ if equal to 1, the material is isotropic

•
$$A_Z = \frac{c_{44}}{C'} = \frac{2c_{44}}{c_{11} - c_{12}}$$

• Poisson's ratio¹ - brittle to ductile border at 0.26

•
$$\nu = \frac{3B-2G}{2(3B+G)}$$

GPa	<i>c</i> ₁₁	<i>c</i> ₁₂	C44	В	Ε	G	$\frac{G}{B}$	Az	ν
Th_2C_3	310	96	84	167	234	92	0.55	0.79	0.27
U_2C_3	311	129	101	189	249	97	0.51	1.11	0.28
Shi et al. ³	383	121	91	208	238 ⁴	91 ⁴	0.44 ⁴	0.69 ⁴	0.31 ⁴

¹G. Grimvall, *Thermophysical Properties of Materials* (Elsevier, North-Holland, Amsterdam, 1999).

²S. F. Pugh, Philos. Mag., 45, 823-843 , (1954).

³H. Shi et al., J. Nucl. Mater., 396, 218-222 (2010).

 4 For a cubic system, $G pprox c_{44}$; we calculated marked values using this fact

Results - Thermodynamic Properties

Conclusion

- $\bullet~U_2C_3$ is FM with about 0.07 eV/f.u. lower than AFM ordering
- $\bullet~Th_2C_3$ is non-magnetic and stable at 0 K and ambient pressure
- magnetism in U_2C_3 originates from the $\approx 7\times$ more 5f electrons than in Th_2C_3
- the chemical bonding in U_2C_3 and Th_2C_3 is caused by 5f and 6d electrons, respectively
- $\bullet\,$ both phases are anisotropic and lie on the verge of brittle-to-ductile behavior, with U_2C_3 being slightly more ductile

•
$$U_2C_3$$
: $\frac{G}{B} = 0.51$

•
$$Th_2C_3$$
: $\frac{G}{B} = 0.55$

• calculated temperature dependence of heat capacity with its electronic contribution is in a good agreement with experimental values

¹H. Shi et al., J. Nucl. Mater., 396, 218-222 (2010).