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Wavenumber and dispersion

Wave number is spatial frequency.
period T wavelength λ

frequency f = 1/T wavenumber ν = 1/λ
angular frequency ω = 2πf (angular) wavenumber k = 2πν

Dispersion
Propagation characteristics depends on frequency, k = k (ω). Wave components traveling at
different speeds.

Phase velocity cp =
ω

k
Group velocity cg =

∂ω

∂k
Non-dispersive propagation k (ω) = 1

c k, cp = cg = c
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Dispersion
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Figure 1: Non-dispersive propagation (top), dispersive propagation (bottom).
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Lamb waves

Lamb waves propagate in solid plates or spheres. Superposition of longitudinal and transversal
waves reflected by two paralllel surfaces.
Two types of modes – symmetric and antisymmetric. 1

a) b)

Figure 2: Symmetric (a) and antisymmetric mode (b) .

1ROSE, Joseph L. Ultrasonic guided waves in solid media. New York: Cambridge University Press, 2014.
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Rayleig–Lamb frequency equations

tan (qh)
tan (ph) = −

4k2pq
(q2 − k2)2 (symmetric modes) (1)

tan (qh)
tan (ph) = −

(
q2 − k2)2

4k2pq (antisymmetric modes) (2)

where p2 =
ω2

c2
L
− k2 and q2 =

ω2

c2
T
− k2, (3)

h half thickness, cL longitudinal wave velocity, cT transversal wave velocity
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Rayleig–Lamb frequency equations

tan (qh)
tan (ph) = −

4k2pq
(q2 − k2)2 (symmetric modes) (4)

tan (qh)
tan (ph) = −

(
q2 − k2)2

4k2pq (antisymmetric modes) (5)

where p2 =
ω2

c2
L
− k2 and q2 =

ω2

c2
T
− k2, (6)

Complex solutions
Finite number of real and pure imaginary solutions and infinite number of complex
inhomogeneous solutions.
I =k < 0, wave amplitude increases exponentially with distance (not observed);
I =k > 0, wave amplitude decreases exponentially with distance (evanescent wave,

disappearing quickly);
I =k = 0 (k ∈ R), wave propagates without attenuation.
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Rayleig–Lamb frequency equations
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Figure 3: Dispersion curves for Lamb wave modes in aluminium plate, thickeness 0,7 mm. cL = 6,35 mm µs−1,
cT = 3,08 mm µs−1.
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Determination of dispersion curves

Temporal Fourier transform converts from the time to frequency domain. Spatial Fourier
transform converts from the distance to wavenumber domain. Two-dimensional Fourier
tranform is applied on array of wave propagation signals,

H(k, ω) =
∫
R

∫
R

u (x , t) exp [−i (kx + ωt)] dxdt,

the result is two-dimensional array of amplitudes in frequency-wavenumber domain, where the
dispersion curves may be distinguished.2

2ALLEYNE, D. a P. CAWLEY. A two-dimensional Fourier transform method for the measurement of
propagating multimode signals. The Journal of the Acoustical Society of America [online]. 1991, 89(3),
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Determination of dispersion curves

Signals acquired in equidistantly spaced points along the wave propagation path (through
acoustic source) – from experiment or numerical simulation,

u(x , t), x = x0 + n∆x , t ∈ 〈0,T 〉 .

Avoid aliasing using high enough sampling frequency and fine spacing.

Input signal
Wide band needed, e.g. linear chirp (frequencies represented equally in range from f0 to f1),

s (t) = sin
[
2π
(
f0t + αt2/2

)]
, t ∈ 〈0,T0〉 , kde α = f1 − f0

T .
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Experimental measurement

Linear chirp from 100 kHz to 1 MHz, 2500 points, step 0,1 mm, 50000 samples at 20 MHz.
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Figure 4: Input signal – linear chirp.
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Experimental measurement
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Figure 5: Experimentally acquired signals (cropped).
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Dispersion curves

H = np.fft.fft2(u) # u (2500, 5000)
k = np.fft.fftfreq(H.shape[0], dx) # dx = 1e-4
f = np.fft.fftfreq(H.shape[1], 1/freq) # freq = 20e6
H = np.abs(H) # get amplitudes
fi = (f >= 0) & (f < 1.5e6)
ki = (k >= 0) & (k < 700)
H = H[ki, :][:, fi] # crop
f = f[fi]
k = k[ki] * 2 * np.pi # it’s angular wavenumber
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Dispersion curves

0, 0 0, 2 0, 4 0, 6 0, 8 1, 0 1, 2 1, 4
f [MHz]

0

1

2

3

4

k
[m

m
−

1 ]

10

20

30

40

a
[a

u]

Figure 6: Amplitude of two-dimensional Fourier transform of acquired signals (cropped).
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Dispersion curve extraction
Frequency equalization – H̃ (k, f ) = H (k, f ) /maxf H (k, f )
H = H / np.max(H, axis=0)[np.newaxis, :]
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Figure 7: Amplitude of two-dimensional Fourier transform of acquired signals, equalized.
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Dispersion curve extraction
Thresholding
h = 0.9 # threshold level
H = H > h
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Figure 8: Amplitude of two-dimensional Fourier transform of acquired signals, thresholded.
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Dispersion curve extraction
Curve fitting – f̂ (k) ≈ minf

{
H̃ (k, f ) > t

}
, “lay” curve on top of thresholded points

X = np.where(H) # get indices
X = np.split(X[1], np.cumsum(np.unique(X[0], return counts=True)[1])[:-1])
Y = np.zeros(H.shape[0]) # index of point for each wavenumber
for i in range(len(X)):

if len(X[i]) > 0: Y[i] = np.min(X[i])
plt.plot(f[Y.astype(’int’)], k) # curve given by (f, k)
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Figure 9: Thresholded points, fitted curve.
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Dispersion curve extraction
A0 mode, compare with computed curve.
Parameters estimation – mincL,cT,h

∑
k

[
f̂ (k)− f (k, cL, cT, h)

]2
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Figure 10: Extracted curve and computed curve.
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Summary

I Time-map of Lamb wave propagation acquired using experiment of numerical simulation
I Dispersion curve extracted from timemap by means of Fourier transform
I Two-dimensional Fourier transform is carried to go to frequency-wavenumber domain

where dispersion curve is distinguishable
I Material parameters (propagation velocities and thickness) estimated from dispersions

curve and theoretical frequency equations
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