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Wavenumber and dispersion

Wave number is spatial frequency.

period T wavelength A
frequency f=1/T wavenumber v=1/\
angular frequency w=2xf (angular) wavenumber k =2nv
Dispersion

Propagation characteristics depends on frequency, k = k (w). Wave components traveling at
different speeds.

w
Phase velocity ¢, = X

) Ow
Group velocity ¢; = %

1

Non-dispersive propagation k (w) = 2k, ¢, =¢cz = ¢
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Dispersion
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Figure 1: Non-dispersive propagation (top), dispersive propagation (bottom).
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Lamb waves

Lamb waves propagate in solid plates or spheres. Superposition of longitudinal and transversal
waves reflected by two paralllel surfaces.
Two types of modes — symmetric and antisymmetric.

a) b)
UDWW M ™s

Figure 2: Symmetric (a) and antisymmetric mode (

1

1ROSE, Joseph L. Ultrasonic guided waves in solid media. New York: Cambridge University Press, 2014.
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Rayleig—Lamb frequency equations

tan (gh) 4k2pq |
tan (ph) - (¢ — k2)2 (symmetric modes)
tan(gh 2 _ g2)?
tan ((/C)Ih)) - (q4k2pq) (antiSymmetric modes)
2 2
where p? = %_ K and ¢? = % s
L T

h half thickness, ¢ longitudinal wave velocity, ¢t transversal wave velocity
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Rayleig—Lamb frequency equations

tan (qh) 4k?pq .
=- 5 (symmetric modes)
an(oh) (2 k)

tan (gh 2 k2)?
— ((Zh)) = (q4k2pq) (antisymmetric modes)

2
w w
where p2:—2—k2 and q2:—2—k2,
G
L

Complex solutions

Finite number of real and pure imaginary solutions and infinite number of complex
inhomogeneous solutions.

> Sk < 0, wave amplitude increases exponentially with distance (not observed);

> Sk > 0, wave amplitude decreases exponentially with distance (evanescent wave,
disappearing quickly);

» Sk =0 (k € R), wave propagates without attenuation.
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Rayleig—Lamb frequency equations
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Figure 3: Dispersion curves for Lamb wave modes in aluminium plate, thickeness 0,7 mm. ¢ = 6,35 mmps™?,

cr =3,08mmps~L.
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Determination of dispersion curves

Temporal Fourier transform converts from the time to frequency domain. Spatial Fourier
transform converts from the distance to wavenumber domain. Two-dimensional Fourier
tranform is applied on array of wave propagation signals,

H(k,w):/R/Ru(x, t) exp [—i (kx + wt)] dxdt,

the result is two-dimensional array of amplitudes in frequency-wavenumber domain, where the
dispersion curves may be distinguished.?

2ALLEYNE, D. a P. CAWLEY. A two-dimensional Fourier transform method for the measurement of
propagating multimode signals. The Journal of the Acoustical Society of America [online]. 1991, 89(3),
3ep50-11682cit. 2020-01-06]. DOI: 10.1121/3riO0B360dSHNOBQIADGGoring Systems



Determination of dispersion curves

Signals acquired in equidistantly spaced points along the wave propagation path (through
acoustic source) — from experiment or numerical simulation,

u(x,t), x=xp+nlAx, t€ {0, T).
Avoid aliasing using high enough sampling frequency and fine spacing.

Input signal
Wide band needed, e.g. linear chirp (frequencies represented equally in range from f to f;),
fi—fo

s(t) =sin [2m (it +at?/2)], t€(0,To), kdea= =
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Experimental measurement

Linear chirp from 100 kHz to 1 MHz, 2500 points, step 0,1 mm, 50000 samples at 20 MHz.
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Figure 4: Input signal — linear chirp.
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Experimental measurement
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Figure 5: Experimentally acquired signals (cropped).
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Dispersion curves

H = np.fft.fft2(u) # u (2500, 5000)
k = np.fft.fftfreq(H.shape[0], dx) # dx = le-4

f = np.fft.fftfreq(H.shapel[1], 1/freq) # freq = 20e6

H #

= np.abs(H)

= (f >=0) & (f < 1.5e6)
= (k >=0) & (k < 700)
H=H[ki, :1[:, fil # crop

f = f[fil

k = k[ki] * 2 * np.pi # it’s angular wavenumber

get amplitudes

W Hh
[
o
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Dispersion curves
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Figure 6: Amplitude of two-dimensional Fourier transform of acquired signals (cropped).
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Dispersion curve extraction

Frequency equalization — H (k, f) = H (k, f) / maxs H (k, f)
H = H / np.max(H, axis=0) [np.newaxis, :]

Figure 7: Amplitude of two-dimensional Fourier transform of acquired signals, equalized.

Sep. 17 - 21, 2020

0,6

1,0

0,8
f [MHz]

SPMS 2020 Stochastic and Physical Monitoring Systems

1,0

0,8

0,6

a[au]

0,4

0,2

15



Dispersion curve extraction

Thresholding

h=0.9 # threshold level
H=H>h
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Figure 8: Amplitude of two-dimensional Fourier transform of acquired signals, thresholded.
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Dispersion curve extraction

Curve fitting — ?(k) ~ minfs {Itl(k7 f)> t}, “lay” curve on top of thresholded points

X = np.where(H) # get indices
X = np.split(X[1], np.cumsum(np.unique(X[0], return_counts=True) [1])[:-1])
Y = np.zeros(H.shape[0]) # index of point for each wavenumber

for i in range(len(X)):
if len(X[il) > 0: Y[i] = np.min(X[il)
plt.plot(f[Y.astype(’int’)], k) # curve given by (f, k)
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Figure 9: Thresholded points, fitted curve.
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Dispersion curve extraction

A0 mode, compare with computed curve.

~ 2
Parameters estimation — ming c;,n > 4 [f(k) — f(k,cL,cr,h)
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Figure 10: Extracted curve and computed curve.
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Summary

» Time-map of Lamb wave propagation acquired using experiment of numerical simulation

v

Dispersion curve extracted from timemap by means of Fourier transform

» Two-dimensional Fourier transform is carried to go to frequency-wavenumber domain
where dispersion curve is distinguishable

» Material parameters (propagation velocities and thickness) estimated from dispersions
curve and theoretical frequency equations
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