Dispersion curves and their measurement

Radovan Zeman, Jan Kober

Institute of Thermomechanics Czech Academy of Sciences

Sep. 17 - 21, 2020

Dispersion

Lamb waves and frequency equations

Determination of dispersion curves

Wavenumber and dispersion

Wave number is spatial frequency.

period	Т	wavelength	λ
frequency	f=1/T	wavenumber	$ u = 1/\lambda$
angular frequency	$\omega = 2\pi f$	(angular) wavenumber	$k=2\pi u$

Dispersion

Propagation characteristics depends on frequency, $k = k(\omega)$. Wave components traveling at different speeds.

Phase velocity $c_{\rm p} = \frac{\omega}{k}$ Group velocity $c_{\rm g} = \frac{\partial \omega}{\partial k}$ Non-dispersive propagation $k(\omega) = \frac{1}{c}k$, $c_{\rm p} = c_{\rm g} = c$

Dispersion

Figure 1: Non-dispersive propagation (top), dispersive propagation (bottom).

Lamb waves

Lamb waves propagate in solid plates or spheres. Superposition of longitudinal and transversal waves reflected by two paralllel surfaces.

Two types of modes – symmetric and antisymmetric. ¹

Figure 2: Symmetric (a) and antisymmetric mode (b) .

¹ROSE, Joseph L. *Ultrasonic guided waves in solid media*. New York: Cambridge University Press, 2014. **ISBN 97.8e2b-107-04895-9**. SPMS 2020 Stochastic and Physical Monitoring Systems

Rayleig–Lamb frequency equations

$$\frac{\tan (qh)}{\tan (ph)} = -\frac{4k^2pq}{(q^2 - k^2)^2} \quad (\text{symmetric modes}) \tag{1}$$

$$\frac{\tan (qh)}{\tan (ph)} = -\frac{(q^2 - k^2)^2}{4k^2pq} \quad (\text{antisymmetric modes}) \tag{2}$$

$$\text{where} \quad p^2 = \frac{\omega^2}{c_1^2} - k^2 \quad \text{and} \quad q^2 = \frac{\omega^2}{c_T^2} - k^2, \tag{3}$$

h half thickness, cL longitudinal wave velocity, cT transversal wave velocity

Rayleig–Lamb frequency equations

$$\frac{\tan (qh)}{\tan (ph)} = -\frac{4k^2 pq}{(q^2 - k^2)^2} \quad (\text{symmetric modes}) \tag{4}$$

$$\frac{\tan (qh)}{\tan (ph)} = -\frac{(q^2 - k^2)^2}{4k^2 pq} \quad (\text{antisymmetric modes}) \tag{5}$$

$$\text{where} \quad p^2 = \frac{\omega^2}{c_1^2} - k^2 \quad \text{and} \quad q^2 = \frac{\omega^2}{c_T^2} - k^2, \tag{6}$$

Complex solutions

Finite number of real and pure imaginary solutions and infinite number of complex inhomogeneous solutions.

- $\Im k < 0$, wave amplitude increases exponentially with distance (not observed);
- Sk > 0, wave amplitude decreases exponentially with distance (evanescent wave, disappearing quickly);
- ▶ $\Im k = 0$ ($k \in \mathbb{R}$), wave propagates without attenuation.

Rayleig–Lamb frequency equations

Figure 3: Dispersion curves for Lamb wave modes in aluminium plate, thickeness 0,7 mm. $c_L = 6,35$ mm μ s⁻¹, $c_T = 3,08$ mm μ s⁻¹.

Sep. 17 - 21, 2020

Temporal Fourier transform converts from the time to frequency domain. Spatial Fourier transform converts from the distance to wavenumber domain. Two-dimensional Fourier transform is applied on array of wave propagation signals,

$$H(k,\omega) = \int_{\mathbb{R}} \int_{\mathbb{R}} u(x,t) \exp\left[-i(kx+\omega t)\right] dx dt,$$

the result is two-dimensional array of amplitudes in frequency-wavenumber domain, where the dispersion curves may be distinguished.²

²ALLEYNE, D. a P. CAWLEY. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. *The Journal of the Acoustical Society of America* [online]. 1991, 89(3), <u>4,559-121682</u>(cit. 2020-01-06]. DOI: 10.1121/<u>32.4005380.cd</u>SSNn0001cA966.oring Systems

Signals acquired in equidistantly spaced points along the wave propagation path (through acoustic source) – from experiment or numerical simulation,

$$u(x,t), x = x_0 + n\Delta x, t \in \langle 0, T \rangle.$$

Avoid aliasing using high enough sampling frequency and fine spacing.

Input signal

Wide band needed, e.g. linear chirp (frequencies represented equally in range from f_0 to f_1),

$$s(t) = \sin\left[2\pi\left(f_0t + \alpha t^2/2
ight)
ight], \quad t \in \langle 0, T_0
angle, \quad \mathsf{kde} \ lpha = rac{f_1 - f_0}{T}.$$

Experimental measurement

Linear chirp from 100 kHz to 1 MHz, 2500 points, step 0,1 mm, 50000 samples at 20 MHz.

Figure 4: Input signal – linear chirp.

Experimental measurement

Figure 5: Experimentally acquired signals (cropped).

```
H = np.fft.fft2(u)
k = np.fft.fftfreq(H.shape[0], dx)
f = np.fft.fftfreq(H.shape[1], 1/freq)
H = np.abs(H)
fi = (f \ge 0) \& (f < 1.5e6)
ki = (k \ge 0) \& (k < 700)
H = H[ki, :][:, fi]
f = f[fi]
k = k[ki] * 2 * np.pi
```

u (2500, 5000) # dx = 1e-4# freq = 20e6 # get amplitudes

crop

it's angular wavenumber

Figure 6: Amplitude of two-dimensional Fourier transform of acquired signals (cropped).

Frequency equalization $-\widetilde{H}(k, f) = H(k, f) / \max_{f} H(k, f)$ H = H / np.max(H, axis=0) [np.newaxis, :]

Figure 7: Amplitude of two-dimensional Fourier transform of acquired signals, equalized.

Figure 8: Amplitude of two-dimensional Fourier transform of acquired signals, thresholded.

plt.plot(f[Y.astype('int')], k) # curve given by (f, k)

Figure 9: Thresholded points, fitted curve.

A0 mode, compare with computed curve.

Parameters estimation – $\min_{c_{L},c_{T},h}\sum_{k}\left[\widehat{f}(k) - f(k,c_{L},c_{T},h)\right]^{2}$

Figure 10: Extracted curve and computed curve.

- ▶ Time-map of Lamb wave propagation acquired using experiment of numerical simulation
- Dispersion curve extracted from timemap by means of Fourier transform
- Two-dimensional Fourier transform is carried to go to frequency-wavenumber domain where dispersion curve is distinguishable
- Material parameters (propagation velocities and thickness) estimated from dispersions curve and theoretical frequency equations