4. miniworkshop difrakce a ultraperiferálních srážek

Who we are, and what we do

Guillermo Contreras

Czech Technical University in Prague

Děčín September 13, 2021

Main focus of our research

Main focus of our research

Why? The strong force is one of the four fundamental forces of nature along with gravity, electromagnetism and weak.

Main focus of our research

Why? The strong force is one of the four fundamental forces of nature along with gravity, electromagnetism and weak.

QCD

What is it? chromodynamics is relativistic quantum field theory of the strong interactions. The fields are quarks and gluons.

Why? The strong force is one of the four fundamental forces of nature along with gravity, electromagnetism and weak.

QCD

What is it? chromodynamics is relativistic quantum field theory of the strong interactions. The fields are quarks and gluons.

Structure of nuclear and nucleon matter

Why? The strong force is one of the four fundamental forces of nature along with gravity, electromagnetism and weak.

QCD

What is it? chromodynamics is relativistic quantum field theory of the strong interactions. The fields are quarks and gluons.

Why? Quarks and gluons are confined inside protons and neutrons (hadrons in general). To study them, we have to study these bound states.

> **Structure of nuclear** and nucleon matter

Why? The strong force is one of the four fundamental forces of nature along with gravity, electromagnetism and weak.

QCD

What is it? chromodynamics is relativistic quantum field theory of the strong interactions. The fields are quarks and gluons.

Why? Quarks and gluons are confined inside protons and neutrons (hadrons in general). To study them, we have to study these bound states.

> **Structure of nuclear** and nucleon matter

How? The structure of matter in terms of quark and gluons changes with the energy (density) of the interaction used to study them.

Equations

Differential equations, **need** initial conditions and predict only **evolution**.

QCD

Differential equations, **need** initial conditions and predict only **evolution**.

Differential equations, **need** initial conditions and predict only **evolution**.

Equations

Solutions

З

Differential equations, <u>need</u> initial conditions and predict only <u>evolution</u>.

Phenomenology: e.g. Dipole amplitudes for multiple observables

To solve the equations of QCD is quite difficult. On alternative is to use QCD inspired models to study in detail some aspect of the structure of matter

Phenomenology: e.g. Dipole amplitudes for multiple observables

To solve the equations of QCD is quite difficult. On alternative is to use QCD inspired models to study in detail some aspect of the structure of matter

Phenomenology: e.g. Dipole amplitudes for multiple observables

Another option is to use approximations of QCD equations and lift one-by-one the approximations to obtain deeper knowledge each time.

To solve the equations of QCD is quite difficult. On alternative is to use QCD inspired models to study in detail some aspect of the structure of matter

Phenomenology: e.g. Dipole amplitudes for multiple observables

Another option is to use approximations of QCD equations and lift one-by-one the approximations to obtain deeper knowledge each time.

Experiment: Measure those observables

To solve the equations of QCD is quite difficult. On alternative is to use QCD inspired models to study in detail some aspect of the structure of matter

Phenomenology: e.g. Dipole amplitudes for multiple observables

Another option is to use approximations of QCD equations and lift one-by-one the approximations to obtain deeper knowledge each time. Develop the next generation of detectors that will allow us to access new observables and/or increase the precision of our current measurements

QCD

Experiment: Measure those observables

To solve the equations of QCD is quite difficult. On alternative is to use QCD inspired models to study in detail some aspect of the structure of matter

Phenomenology: e.g. Dipole amplitudes for multiple observables

Another option is to use approximations of QCD equations and lift one-by-one the approximations to obtain deeper knowledge each time. Develop the next generation of detectors that will allow us to access new observables and/or increase the precision of our current measurements

> **Experiment:** Measure those observables

Analyse the data recorded with an experimental facility (ALICE+LHC) to measure those observables

QCD

What have we done in the last year?

Detectors:

Construction and installation of FDD Installation of MFT and development of the QC system

Detectors:

Construction and installation of FDD Installation of MFT and development of the QC system

Phenomenology: Advances in understanding the BK equation Study of the DVCS process

Detectors:

Construction and installation of FDD Installation of MFT and development of the QC system

Phenomenology: Advances in understanding the BK equation Study of the DVCS process

Analysis of data: New measurements with Run 2 data published Start preparation for Run 3

2028 2029	2030	2031	2032	2033	2034	2035	2036
J F M A M J J A S O N D J F M A M J J A S O N D J Run 4	J F M A M J J A S O N D	J FMAMJJASOND	J F M A M J J A S O N D	J FMAMJJASOND Run 5	J F M A M J J A S O N D		J F M A M J J A S O N D

2028 2029	2030	2031	2032	2033	2034	2035	2036
J F M A M J J A S O N D J F M A M J J A S O N D Run 4	J F M A M J J A S O N D	J F MAMJ J ASOND	J F M A M J J A S O N D	J FMAMJ J ASOND Run 5	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D

Predictions have to be more precise New observables are possible

Run 3: much (really much) more data than before

Run 3: completely new software

2028 202	9 2030	2031	2032	2033	2034	2035	2036
J F MAMJ J ASOND J F MAMJ J	4 4		J F MAMJ J ASOND	J FMAMJJASOND Run 5	J F M A M J J A S O N D	J FMAMJJASOND	J F M A M J J A S O N D

Predictions have to be more precise New observables are possible

Run 3: much (really much) more data than before **Run 3: completely new software** 2022 2020 2021 2019 Long Shutdown 2 (LS2) Run 3

What comes next

2032	2033	2034	2035	2036	
MAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	
	Run 5		LS5		

Predictions have to be more precise New observables are possible