

THE HUNT FOR DARK MATTER

Marek Matas Workshop UPC 13.9.2021 Decin

WHAT IS DARK MATTER

11

GALAXY CLUSTERS

- Fritz Zwicky 1933 Coma Cluster
- Velocity dispersion ~ cluster mass

GALAXY CLUSTERS

- Fritz Zwicky 1933 Coma Cluster
- Velocity dispersion ~ cluster mass
- Expected velocity ~ 80 km/s
- Observed velocity ~ 1000 km/s

GALAXY CLUSTERS

- Fritz Zwicky 1933 Coma Cluster
- Velocity dispersion ~ cluster mass
- Expected velocity ~ 80 km/s
- Observed velocity ~ 1000 km/s

If this would be confirmed, we would get the surprising result that dark matter is present in much greater amount than luminous matter.

ETH zürich

Fritz Zwicky 1933

GRAVITATIONAL LENSING

Massive object bends spacetime

Massive object bends spacetime

BULLET CLUSTER

"A direct empirical proof of the existence of dark matter"

BULLET CLUSTER

"A direct empirical proof of the existence of dark matter"

A DIRECT EMPIRICAL PROOF OF THE EXISTENCE OF DARK MATTER *

Douglas Clowe¹, Maruša Bradač², Anthony H. Gonzalez³, Maxim Markevitch^{4,5}, Scott W. Randall⁴, Christine Jones⁴, and Dennis Zaritsky¹

ApJ Letters in press

WHAT IS Dark Matter

CLUSTER VELOCITY DISPERSION +GRAVITATIONAL LENSING +GALACTIC ROTATION CURVES +BULLET CLUSTER COLLISION +COSMIC MICROWAVE BACKGROUND +VERTICAL OSCILLATIONS +LENSING SEARCH FOR MACHOS =UNKNOWN PARTICLES WITH MASS OF 6X THAT OF VISIBLE MATTER

HOW TO Detect it

DIRECT DETECTION

COLLIDER EXPERIMENTS

INDIRECT DETECTION

HOW TO DETECT IT

DARK MATTER WIND

You are spinning here

This is the dark matter halo

DARK MATTER WIND

You are spinning here

Dark matter particles are raining down on us each day!

This is the dark matter halo

WIMP MIRACLE

Weakly

Interacting

Massive

Particle

Focus on DM – nuclear interactions

29

WIMP MIRACLE

Weakly

Interacting

Massive

Particle

Focus on DM – nuclear interactions

Credit: https://www.quantamagazine.org/dark-matter-experiment-finds-unexplained-signal-20200617/, https://en.wikipedia.org/wiki/DEAP, Reidar Hahn, Fermilab

WIMP MIRACLE

Credit: https://www.quantamagazine.org/dark-matter-experiment-finds-unexplained-signal-20200617/, https://en.wikipedia.org/wiki/DEAP, Reidar Hahn, Fermilab

PAST WIMP — LOWER MASS SCALES

- For lighter DM, nuclei recoils do not transfer enough energy.
- We need to look for interaction with lighter particles electrons!

CHOOSING A TARGET MATERIAL

 In order to calculate the detection rate, we need to have the electron wavefunction for the initial and final state.

General QFT can give use some DM-

OUR WORK

CURRENT RESULTS

General QFT has been used to determine all general crystal responses.

$\mathcal{O}_1 = \mathbb{1}_{\chi} \mathbb{1}_e$	$\mathcal{O}_{11} = i \mathbf{S}_{\chi} \cdot \frac{\mathbf{q}}{m_e} \mathbb{1}_e$
$\mathcal{O}_3 = i \mathbf{S}_e \cdot (\frac{\mathbf{q}}{m_e} \times \mathbf{v}_{\mathrm{el}}^{\perp}) \mathbb{1}_{\chi}$	$\mathcal{O}_{12} = \mathbf{S}_{\chi} \cdot (\mathbf{S}_e \times \mathbf{v}_{\mathrm{el}}^{\perp})$
$\mathcal{O}_4 = \mathbf{S}_{\chi} \cdot \mathbf{S}_e$	$\mathcal{O}_{13} = i(\mathbf{S}_{\chi} \cdot \mathbf{v}_{\mathrm{el}}^{\perp})(\mathbf{S}_{e} \cdot \frac{\mathbf{q}}{m_{e}})$
$\mathcal{O}_5 = i \mathbf{S}_{\chi} \cdot (\frac{\mathbf{q}}{m_e} \times \mathbf{v}_{\mathrm{el}}^{\perp}) \mathbb{1}_e$	$\mathcal{O}_{14} = i(\mathbf{S}_{\chi} \cdot \frac{\mathbf{q}}{m_e})(\mathbf{S}_e \cdot \mathbf{v}_{\mathrm{el}}^{\perp})$
$\mathcal{O}_6 = (\mathbf{S}_{\chi} \cdot \frac{\mathbf{q}}{m_e})(\mathbf{S}_e \cdot \frac{\mathbf{q}}{m_e})$	$\mathcal{O}_{15} = i\mathcal{O}_{11}[(\mathbf{S}_e \times \mathbf{v}_{el}^{\perp}) \cdot \frac{\mathbf{q}}{m_e}]$
$\mathcal{O}_7 = \mathbf{S}_e \cdot \mathbf{v}_{\mathrm{el}}^{\perp} \mathbb{1}_{\chi}$	$\mathcal{O}_{17} = i rac{\mathbf{q}}{m_e} \cdot \boldsymbol{\mathcal{S}} \cdot \mathbf{v}_{\mathrm{el}}^{\perp} \mathbb{1}_e$
$\mathcal{O}_8 = \mathbf{S}_{\chi} \cdot \mathbf{v}_{\mathrm{el}}^{\perp} \mathbb{1}_e$	$\mathcal{O}_{18} = i rac{\mathbf{q}}{m_e} \cdot \boldsymbol{\mathcal{S}} \cdot \mathbf{S}_e$
$\mathcal{O}_9 = i \mathbf{S}_{\chi} \cdot (\mathbf{S}_e \times \frac{\mathbf{q}}{m_e})$	$\mathcal{O}_{19} = rac{\mathbf{q}}{m_e} \cdot \boldsymbol{\mathcal{S}} \cdot rac{\mathbf{q}}{m_e}$
$\mathcal{O}_{10} = i\mathbf{S}_e \cdot \frac{\mathbf{q}}{m_e} \mathbb{1}_{\chi}$	$\mathcal{O}_{20} = (\mathbf{S}_e \times \frac{\mathbf{q}}{m_e}) \cdot \boldsymbol{\mathcal{S}} \cdot \frac{\mathbf{q}}{m_e}$

_	
	PHYSICAL REVIEW RESEARCH 2, 033195 (2020)
	A tamia regnances to general dark matter electron interactions
	Atomic responses to general dark matter-electron interactions
I	Riccardo Catena ^{0,1,*} Timon Emken ^{0,1,†} Nicola A. Spaldin ^{0,2,‡} and Walter Tarantino ^{2,§}
	¹ Chalmers University of Technology, Department of Physics, SE-412 96 Göteborg, Sweden
	² Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
	K
	- wavefunci
	Ar (atomic wave
	used for Xe and Any

CURRENT RESULTS

General QFT has been used to determine all general crystal responses.

 These general responses have been implemented to Quantum Espresso and we calculated interaction rates for Si and Ge crystals.

 Graphene – resolving angular dependence of the interaction with QE and producing predictions for the sensitivity of PTOLEMY.

By pointing graphene layer towards and away from the DM wind, we can discriminate background events.

- Graphene resolving angular dependence of the interaction with QE and producing predictions for the sensitivity of PTOLEMY.
- Noble liquids modelling liquid Xe and Ar with the use of DFT and general DM responses.

- Graphene resolving angular dependence of the interaction with QE and producing predictions for the sensitivity of PTOLEMY.
- Noble liquids modelling liquid Xe and Ar with the use of DFT and general DM responses.
- Scintillators including spin-orbit coupling to correct bandgap and account for spin-dependence in DM interactions.

- Graphene resolving angular dependence of the interaction with QE and producing predictions for the sensitivity of PTOLEMY.
- Noble liquids modelling liquid Xe and Ar with the use of DFT and general DM responses.
- Scintillators including spin-orbit coupling to correct bandgap and account for spin-dependence in DM interactions.
- Determining DM interaction rates from the dielectric function.

Energy loss function

$$\operatorname{Im}\left[\frac{-1}{\epsilon(\omega,\mathbf{k})}\right]$$
Dielectric function

GOT BETTER IDEAS? Join the hunt!

THANK YOU FOR YOUR **ATTENTION** "Looking for dark matter is like taking a rubber unicorn off a ceiling.

Surprisingly hard yet very rewarding."

BACKUP SLIDES

MATERIALS OF INTEREST

Credit: https://astronomynow.com/2020/06/21/scientists-ponder-inconclusive-data-from-dark-matter-experiment/, https://www.gssi.it/communication/news-events/item/67-first-data-from-the-new-dark-matter-hunter-is-ready-darkside-50-a-successful-technology, https://www.researchgate.net/figure/Timeline-and-evolution-of-the-KENON-Dark-Matter-Project-and-DARWIN-in-its-context_fig5_339240163/actions#reference

NOBLE LIQUIDS

Xe, Ar detectors primarily for nuclear recoil experiments

- Similar mass of the nucleus w.r.t. the expected WIMP scale
- Sensitive to single-electron excitations

Xe ~12.4 eV	XENON10	XENON100	XENON1T	XENONnT	DARWIN
Ar ~16 eV					
	15 cm	Cite in Hillie			
	2005 – 2007	2008 – 2016	2012 – 2018	2019 – 2023	2025 -
	~15 kg	~62 kg	~2 t	~5.9 t	40 t
	15 cm	30 cm	1 m	1.5 m	2.6 m
arkside experiment	~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

Darkside experiment

ETH zürich

Credit: https://astronomynow.com/2020/06/21/scientists-ponder-inconclusive-data-from-dark-matter-experiment/, https://www.gssi.it/communication/news-events/item/67-first-data-from-the-new-dark-matter-hunter-is-ready-darkside-50-a-successful-technology, https://www.researchgate.net/figure/Timeline-and-evolution-of-the-XENON-Dark-Matter-Project-and-DARWIN-in-its-context_fig5_339240163/actions#reference

Credit: https://astronomynow.com/2020/06/21/scientist-ponder-inconclusive-data-from-dark-matter-experiment/, https://www.researchgate.net/figure/Timeline-and-evolution-of-the-XENON-Dark-Matter-Project-and-DARWINI-in-its-context_fig5_339240163/actions#reference

Electron-hole generation and readout similar to CCDs

ETH zürich

Credit: https://link.springer.com/article/10.1007/s00418-018-1753-y/figures/6, https://astro.fnal.gov/science/dark-matter/supercdms/dark-matter/supercdm

SCINTILLATORS

- Annual oscillations
- DAMA/LIBRA
- Nal 12.9 σ
- $E_{gap} \sim 5.8 \text{ eV}$
- E ~ 2-6 keV
- High cross section

ETH zürich

https://medium.com/starts-with-a-bang/how-the-experiment-that-claimed-to-detect-dark-matter-fooled-itself-6962e7f90e61, https://news.tsinghua.edu.cn/en/info/1002/7885.htm https://mappingignorance.org/2017/02/13/testing-alternative-dark-matter-hypotesis-clock/

ETH zürich

https://majpingignorance.org/2017/02/13/testing-alternative-dark-matter-hypotesis-clock/, https://mww.researchgate.net/figure/Particle-dark-matter-searches-current-status-of-constraints-on-WIMP-dark-matter-from_fig2_281896319

LIQUID HELIUM

- Low mass for DM-nucleus interactions.
- It can be manufactured very pure.
- meV phonons can eject Helium atoms.
- Adsorption gives $\sim 10x$ the ejection energy.
- Dark matter of $m_{DM} \sim MeV$ can be probed.
- You can reach keV by using two back-to-back phonons.

GRAPHENE

ETH zürich

Directionality of DM wind is a crucial help to discriminate from background.

- Experiment Ptolemy tailored to search for relic neutrinos.
- Stripped of Tritium atoms, can look for DM.
- Is large mass of graphene detector viable?

SUPERCONDUCTORS

- Breaking Cooper pairs meV
- Probed $m_{DM} \sim keV$

 10^{-28}

 10^{-33}

 10^{-43}

10-4 0.01

ETH zürich

در الالم الالا-10 م

In bulk with a TES readout.

NbN 248 meV

177µg-yr

0.10

NbN 124 meV

g-yr

- As superconducting nanowires.
- Bad for dark photon mediators.

(a)

I_{bias}

Hot-spot

event

1

 $Credit: https://arxiv.org/pdf/1903.05101.pdf, https://www.researchgate.net/figure/Transition-curve-of-a-transition-edge-sensor-TES-between-superconductor-state-and_fig7_30003377$ https://www.slac.stanford.edu/econf/C140914/talks/moixb3_talk.pdf

DIRAC MATERIALS

- Similar to a semiconductor (for DM)
- meV bandgap $m_{DM} \sim keV$
- Much better for dark photon models
- **TES readout**

If all kinetic energy is transferred in the ideal case, we get

 $E_{deposit} \sim m_{DM} v^2 \sim 10^{-6} m_{DM}$

