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Big questions in QCD

What is the structure of hadrons?

How does it evolve with changing energy?

Does the number of gluons grow infinitely?

Or does it saturate?
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Deep Inelastic Scattering (DIS)

Excellent tool to probe inner structure of hadrons.

DIS cross section

d2σ

dxdQ2
=

4πα2

Q4

[
y 2F1(x ,Q2) + (1− y)

F2(x ,Q2)

x

]
F1, F2 – structure functions, include photon-proton interaction.

W 2
γ∗p = (P + q)2

Q2 = −q2 = −(k − k ′)2

x =
Q2

2P · q

y =
P · Q
P · k

XN(P )

l′(k′)

l(k) γ∗(q)
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Evolution of proton structure

Composition of the proton changes with x and Q2.

At low energies proton dominated by valence quarks.

At large energies gluons dominate.
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Are gluon densities growing to infinity?

Figure: Diagram picturing the QCD
evolution of the partonic structure of
the proton.
C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

Evolution with increasing Q2 described by

DGLAP equations.

By fixing the scale of the process, one can

fix the position in lnQ2.

Going to smaller x , one can reach the

saturation scale Q2
S(x)

I Below Q2
S (x)→ dilute regime, linear

evolution of the gluon density (BFKL).

I Above Q2
S (x)→ dense regime, non-linear

evolution of the gluon density (JIMWLK,

BK).

Dagmar Bendová 5 / 31
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What other process is sensitive to the proton structure?

Exclusive and dissociative production of vector mesons (VM).

Advantage: Easily observable final state.

Figure: Diagrams for exclusive (a) and dissociative (b) production of vector mesons.
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The color dipole picture

The photon interacts via its qq̄ Fock state with the proton in the target rest frame.

At low x , lifetime of the fluctuation is larger than dipole-proton interaction time.
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Figure: Schematic pictures of DIS and VM production within the color dipole approach.
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Dipole-proton cross section

From optical theorem

dσqq̄

d~b
= 2N

(
x , ~r , ~b

)

Dipole scattering amplitude N
(
x , ~r , ~b

)
I From a dipole model like GBW, IP-Sat, b-CGC

I From an evolution equation → Balitsky–Kovchegov equation

I Note: impact-parameter dependence can be factorized out

N
(
x , ~r , ~b

)
→ σ0N (x , ~r)Tp

(
~b
)

Dagmar Bendová 8 / 31
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Balitsky–Kovchegov equation at leading-order

∂N(rxy , bxy ,Y )

∂Y
=

∫
d~rxzK(rxy , rxz , rzy )[N(rxz , bxz ,Y ) + N(rzy , bzy ,Y )

−N(rxy , bxy ,Y )− N(rxz , bxz ,Y )N(rzy , bzy ,Y )]

Y = ln
(x0

x

)

Simplest kernel at LO:

KBFKL(rxy , rxz , rzy ) = ᾱS
rxy

rxz rzy
; ᾱS = αS

NC

π
; αS ∼ 1
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What steps can be taken to include higher order contributions?

Include running of the coupling constant αS

αS → αS(r) =
4π

βnf ln

(
4C2

r2Λ2
nf

) ; βnf =
11

3
NC −

2

3
nf

Various choices of the argument of αS(r), most common:

I Parent dipole size αS = αS (rxy )

I Smallest dipole prescription

αS = αS (rmin); rmin = min {rxy , rxz , rzy} ,
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Solution to BK equation at LO - fixed vs running coupling
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What steps can be taken to include higher order contributions?

Include running of the coupling constant αS

Include higher order corrections of αS(r)

→ running coupling (rc) kernel by Balitsky

KBal(rxy , rxz , rzy ) =
ᾱS(rxy )

2π

[
r 2
xy

r 2
xzr 2

zy

+
1

r 2
xz

(
αS(rxz)

αS(rzy )
− 1

)
+

1

r 2
zy

(
αS(rzy )

αS(rxz)
− 1

)]

I Resums higher-order corrections associated with the running coupling.

I Slows down the evolution significantly.

I Very popular in phenomenological applications of LO BK.

Dagmar Bendová 12 / 31
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Solution to LO BK equation - BFKL vs Balitsky kernel
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Solution to rc-BK equation at LO - large rapidities
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What steps can be taken to include higher order contributions?

Include running of the αS

Include higher-order corrections in αS

Resummation of (large) logarithmic terms from NLO contributions

I Corrections where each power of αS is accompanied by a double logarithm

I Corrections with a collinear single-logarithmic term from pure NLO integrals

I Results in so called collinearly-improved BK equation

Kci =
ᾱS

2π

r2
xy

r2
xz r

2
zy

[
r2
xy

min
{
r2
xz , r

2
zy

}]±ᾱSA1

KDLA(ρ),

KDLA(ρ) =
J1

(
2
√
ᾱSρ2

)
√
ᾱSρ

= 1− ᾱSρ
2

2
+

(ᾱSρ
2)2

12
+ . . .

ρ =
√

Lrxz rxy Lrzy rxy ; Lri rxy = ln

(
r2
i

r2
xy

)
.

I + in the exponent ±ᾱSA1 is taken when rxy < min {rxz , rzy}, the negative sign

otherwise.

I Term A1 = 11
12

gives an extra power-law suppresion of the kernel, treats

single-transverse logarithms.
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Solution to collinearly-improved BK equation
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BK equation at next-to-leading order in its original form

d

dY
Tr{Ûx Û

†
y } =

=
αS

2π2

∫
d

2z
~r 2
xy

~r 2
xz~r

2
zy

{
1 +

αS

4π

[
βnf

ln
(
~r 2
xy µ

2
)
− βnf

~r 2
xz −~r

2
zy

~r 2
xy

ln
~r 2
xz

~r 2
zy

+

 67

9
−
π2

3

 NC −
10

9
nf

− 2NC ln
~r 2
xz

~r 2
xy

ln
~r 2
zy

~r 2
xy

]}
×
[
Tr{Ûx Û

†
z }Tr{Ûz Û

†
y } − NCTr{Ûx Û

†
y }
]

+
α2
S

16π4

∫
d

2z d
2w

[(
−

4

~r 4
zw

+

{
2
~r 2
xz ~r

2
wy +~r 2

xw ~r
2
zy − 4~r 2

xy ~r
2
zw

~r 4
zw

[
~r 2
xz ~r

2
wy −~r

2
xw ~r

2
zy

] +
~r 4
xy

~r 2
xz ~r

2
wy −~r

2
xw ~r

2
zy

 1

~r 2
xz ~r

2
wy

+
1

~r 2
zy ~r

2
xw

 +

+
~r 2
xy

~r 2
zw

 1

~r 2
xz ~r

2
wy

−
1

~r 2
xw ~r

2
zy

} ln
~r 2
xz ~r

2
wy

~r 2
xw ~r

2
zy

)
×

×
[
Tr{Ûx Û

†
z }Tr{Ûz Û

†
w}Tr{Ûw Û†y } − Tr{Ûx Û

†
z Ûw U†y Ûz Û

†
w} − (w → z)

]
+

+

{
~r 2
xy

~r 2
zw

 1

~r 2
xz ~r

2
wy

+
1

~r 2
zy ~r

2
xw

 − ~r 4
xy

~r 2
xz ~r

2
wy ~r

2
xw ~r

2
zy

}
ln
~r 2
xz ~r

2
wy

~r 2
xw~r

2
zy

×

×
[
Tr{Ûx Û

†
z }Tr{Ûz Û

†
w}Tr{Ûw Û†y }

]
+

+ 4nf

{
4

~r 4
zw

− 2
~r 2
xw ~r

2
zy +~r 2

wy ~r
2
xz −~r

2
xy ~r

2
zw

~r 4
zw

[
~r 2
xz ~r

2
wy −~r

2
xw ~r

2
zy

] ln
~r 2
xz ~r

2
wy

~r 2
xw ~r

2
zy

}
×

×
[
Tr{taÛx t

b Û†y }
(
Tr{taÛz t

b Û†w} − (w → z)
)] ]
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Looks scary, so let’s break it into individual parts

First term corresponds to LO BK equation → additional corrections ∼ α2
S .

αS

2π2

∫
d2z

~r 2
xy

~r 2
xz~r 2

zy

{
1 +

αS

4π

[
βnf ln

(
~r 2
xy µ

2
)
− βnf

~r 2
xz − ~r 2

zy

~r 2
xy

ln
~r 2
xz

~r 2
zy

+

+

(
67

9
− π2

3

)
NC −

10

9
nf − 2NC ln

~r 2
xz

~r 2
xy

ln
~r 2
zy

~r 2
xy

]}
×
[
Tr{Ûx Û

†
z }Tr{Ûz Û

†
y } − NCTr{Ûx Û

†
y }
]
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Looks scary, so let’s break it into individual parts

Terms of order ∼ α2
S in double integrals (DI) → fluctuations involving 2 additional

partons at the time of the scattering beside the parent dipole.

Term independent of nf in DI — gluon part, both daughter partons are gluons

I Parent dipole ~rxy emits a gluon → two daughter dipoles ~rxz and ~rzy

I Dipole ~rzy emits a gluon at ~w → fluctuates into qq̄ → daughter dipoles ~rxz , ~rzw , ~rwy

I Cubic terms — real contribution, all daughter dipoles interact with the target

I Quadratic term — virtual contribution, dipole at ~w emitted and reabsorbed before or

after interaction, also substracts term with gluons emitted at ~z = ~w

+
α2
S

16π4

∫
d

2z d
2w

[(
−

4

~r 4
zw

+

{
2
~r 2
xz ~r

2
wy +~r 2

xw ~r
2
zy − 4~r 2

xy ~r
2
zw

~r 4
zw

[
~r 2
xz ~r

2
wy −~r

2
xw ~r

2
zy

] +
~r 4
xy

~r 2
xz ~r

2
wy −~r

2
xw ~r

2
zy

 1

~r 2
xz ~r

2
wy

+
1

~r 2
zy ~r

2
xw

 +

+
~r 2
xy

~r 2
zw

 1

~r 2
xz ~r

2
wy

−
1

~r 2
xw ~r

2
zy

} ln
~r 2
xz ~r

2
wy

~r 2
xw ~r

2
zy

)
×

×
[
Tr{Ûx Û

†
z }Tr{Ûz Û

†
w}Tr{Ûw Û†y } − Tr{Ûx Û

†
z Ûw U†y Ûz Û

†
w} − (w → z)

]
+

+

{
~r 2
xy

~r 2
zw

 1

~r 2
xz ~r

2
wy

+
1

~r 2
zy ~r

2
xw

 − ~r 4
xy
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Looks scary, so let’s break it into individual parts

Terms of order ∼ α2
S in double integrals (DI) → fluctuations involving 2 additional

partons at the time of the scattering beside the parent dipole.

Term independent of nf in DI — gluon part, both daughter partons are gluons

I Parent dipole ~rxy emits a gluon → two daughter dipoles ~rxz and ~rzy

I Dipole ~rzy emits a gluon at ~w → fluctuates into qq̄ → daughter dipoles ~rxz , ~rzw , ~rwy

I Cubic terms — real contribution, all daughter dipoles interact with the target

I Quadratic term — virtual contribution, dipole at ~w emitted and reabsorbed before or

after interaction, also substracts term with gluons emitted at ~z = ~w
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Looks scary, so let’s break it into individual parts

Terms of order ∼ α2
S in double integrals (DI) → fluctuations involving 2 additional

partons at the time of the scattering beside the parent dipole.

Term independent of nf in DI — gluon part, both daughter partons are gluons

I Parent dipole ~rxy emits a gluon → two daughter dipoles ~rxz and ~rzy

I Dipole ~rzy emits a gluon at ~w → fluctuates into qq̄ → daughter dipoles ~rxz , ~rzw , ~rwy

I Cubic terms — real contribution, all daughter dipoles interact with the target

I Quadratic term — virtual contribution, dipole at ~w emitted and reabsorbed before or

after interaction, also substracts term with gluons emitted at ~z = ~w

+
α2
S

16π4

∫
d

2z d
2w

[(
−

4

~r 4
zw

+

{
2
~r 2
xz ~r

2
wy +~r 2

xw ~r
2
zy − 4~r 2

xy ~r
2
zw

~r 4
zw

[
~r 2
xz ~r

2
wy −~r

2
xw ~r

2
zy

] +
~r 4
xy

~r 2
xz ~r

2
wy −~r

2
xw ~r

2
zy

 1

~r 2
xz ~r

2
wy

+
1

~r 2
zy ~r

2
xw

 +

+
~r 2
xy

~r 2
zw

 1

~r 2
xz ~r

2
wy

−
1

~r 2
xw ~r

2
zy

} ln
~r 2
xz ~r

2
wy

~r 2
xw ~r

2
zy

)
×

×
[
Tr{Ûx Û
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Looks scary, so let’s break it into individual parts

Terms of order ∼ α2
S in double integrals (DI) → fluctuations involving 2 additional

partons at the time of the scattering beside the parent dipole.

Quark part of NLO corrections ∼ nf → similar situation as with gluons, daughter

partons at the time of the scattering are a quark or an anti-quark
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BK equation at NLO in the mean-field approximation

Suppose a large NC (3 is large enough :))

∂YN(rxy ) =

∫
d2zKa

[
N(rxz) + N(rzy )− N(rxy )− N(rxz)N(rzy )

]
+

∫
d2zd2wKb

[
N(rwy ) + N(rzw )− N(rzy )− N(rxz)N(rzw )− N(rxz)N(rwy )−

−N(rzw )N(rwy ) + N(rxz)N(rzy ) + N(rxz)N(rzw )N(rwy )
]

+

∫
d2zd2wKf

[
N(rxw )− N(rxz)− N(rzy )N(rxw ) + N(rxz)N(rzy )

]

Definitely looks less scary!

Single-integration term — corrections to LO BK

associated with α2
S

Double integration term — pure NLO

contributions x

w

z

y

rzw
rxy

rxw

rwy

rxz

rzy
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NLO kernels

Ka = KBal +
α2
S(rxy )N2

C

8π3

r 2
xy

r 2
xz r 2

zy

[
67

9
− π2

3
− 10

9

nf
NC
− 2 ln

r 2
xz

r 2
xy

ln
r 2
zy

r 2
xy

]
Belongs to term with single integration over transverse coordinate z

Similar structure of the term as in LO BK equation + some NLO corrections

NLO corrections ∼ α2
S

Note the double logarithm!
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Purely NLO kernels

Gluon part:

Kb =
α2
SN

2
C

8π4
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Quark part:
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Notice the single-logarithms and their collinear behavior in both kernels!
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Numerical solutions to NLO BK equation

NLO BK equation is numerically unstable
I Dipole amplitude can even turn negative – negative NLO corrections larger than LO

contribution

I Stable solution obtained only for unphysically large values of some parameters

Additional resumations of single and double logarithms needed → results in a

numerically stable equation

3−
10 2−10 1−10 1

QCDΛr

4−10

3−10

2−10

1−10

1

N
(r

)

  
 0.3≈ 2 = 3, C

f
n

 = 0.241 GeVQCDΛ

 = 1γ = 2, 
QCD

Λ/
s,0

Q

Y = 0

NLO, Y = 5

NLO, Y = 10

TL, HM – Phys. Rev., D93(9):094004, 2016
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Choice of the proper evolution variable

LC momenta of photon and proton:

qµ ≡ (q+, q−, ~q⊥) = (q+,− Q2

2q+ ,~0perp); Pµ = δµ
−
P−

There are two rapidities involved:

I Target (hadron) rapidity η ≡ ln P−

|q−| = ln 2q+P−

Q2 = ln 1
x

I Projectile (dipole) rapidity Y ≡ ln q+

q−
= ln 2q+P−

Q2
0

= ln 1
x

+ ln Q2

Q2
0

= η + ρ

Target frame:

I Dense proton, emissions of soft gluons included in proton WF → JIMWLK

Dipole frame:

I Evolution seen as successive gluon emissions within the dipole WF → BK

I For Q2 >> Q2
0 , emissions are strongly ordered in both long. and trans. momenta

→ soft and collinear emissions → DL contribution ∼ αSY ρ

I DL enhancement holds only when gluon lifetimes are also ordered

2q+

Q2
>>

2k+
1

k2
1,⊥

>> ... >>
2q+

0

Q2
0
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I Projectile (dipole) rapidity Y ≡ ln q+

q−
= ln 2q+P−

Q2
0

= ln 1
x

+ ln Q2

Q2
0

= η + ρ

Target frame:

I Dense proton, emissions of soft gluons included in proton WF → JIMWLK

Dipole frame:

I Evolution seen as successive gluon emissions within the dipole WF → BK

I For Q2 >> Q2
0 , emissions are strongly ordered in both long. and trans. momenta

→ soft and collinear emissions → DL contribution ∼ αSY ρ

I DL enhancement holds only when gluon lifetimes are also ordered

2q+

Q2
>>

2k+
1

k2
1,⊥

>> ... >>
2q+

0

Q2
0
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Choice of the proper evolution variable

Gluon lifetime ordering reduces evolution phase-space from Y to Y − ρ ≡ η

In BK, resumming series in αSY ρ instead of αS(Y − ρ)ρ → condition violated

→ double anti-collinear logarithms

NLO BK includes first arising negative contribution ∼ αSρ
2 → evolution unstable

How to solve problem of unstability:

I Enforce time-ordering in the dipole frame → collinearly-improved BK

→ leading terms OK, but subleading terms ∼ αn
Sρ

2 for n ≥ 2 aren’t under control

I Evolution is in Y , however physical results are in terms of η – not the same thing!

I Evolution in η → time-ordering preserved, no anti-collinear logs
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Collinearly-improved BK in target rapidity

Time-ordering is automatically satisfied, no large anti-collinear logs

Double-log corrections in NLO still present, but suppressed

Further resummation leads to an equation non-local in η

∂Sxy (η)

∂η
=

∫
d2z

ᾱS(rmin)

2π

r 2
xy

r 2
xz r 2

zy

(
r 2
xy

min[rxz , rzy ]

)±A1

[Sxz(η − δxz;r )S(η − δzy ;r )− S(η)]

Rapidity shifts:

δxz;r ≡ max

[
0, ln

r 2
xy

r 2
xz

]

→ Non-zero for emissions where one of daughters << parent

Iancu et al. → proposal of the equation, successful fits to HERA data
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First NLO BK fits to DIS data

First fit to HERA structure function data in CGC framework at NLO

Only case with massless quarks considered

Due to computational demands, full NLO BK approximated by resummation of large

transverse logs

Several forms:

I Nonlocal eq. in Y , collinear double logs resummed via kinematical constraint (KCBK)

I Local eq. in Y , double logs and DGLAP-like single logs resummed directly into kernel

(ResumBK)

I Nonlocal eq. in target rapidity η (TBK)

Two approches to the fit:

I Light-quark contribution to structure functions calculated and compared to inclusive

data in appropriate region

I Interpolated dataset with only light-quark contribution is constructed and fitted
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First NLO BK fits to DIS data

All equations provide equally reasonable description of both F2 data and pseudodata

Q2 dependence of structure functions is weaker than in LO case

All three setups predict almost the same FL when compared to H1 data

In EIC kinematics (very low xBj , the equations start to differ at very large Q2

GB, HH, TL, HM – Phys. Rev., D102: 074028, 2020
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First pheno results with NLO BK fits

Exclusive heavy VM production at NLO

Two problems at NLO:

I Dipole cross section at NLO - calculated via NLO BK equation (or its approximations)

I Extension of the wave function to NLO accuracy

In previous works by Beuf, Lappi, et al., – massless case derived (NLO DIS fits)

Since 2021, WF with massive quarks are available for the longitudinal polarization

HM, JP – arXiv:2104.02349
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Summary

From LO to NLO

I Higher-order corrections ∼ α2
S to LO equation

I Corrections associated with emission of two daughter partons (quarks or gluons)

Several problems of the NLO BK equation and its applications

I Collinear single logarithms and double-logarithmic terms

I Numerical instability (in some cases) and high computational demands

I Proper choice of the evolution variable

I N from NLO BK has to be matched with a wave function at NLO accuracy

→ available for massless quarks, for massive quarks only in some cases

Our plans

I Incorporate η evolution into the LO b-BK (+ new fit) – Matěj?

I Extend η evolution from LO BK to our NLO BK code

I Incorporate b-dependence into the NLO calculation
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