Balitsky-Kovchegov equation at next-to-leading order

Dagmar Bendová

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
$4^{\text {th }}$ Miniworkshop of Diffraction and UPCs

14. 9. 2021, Děčín

Big questions in QCD

- What is the structure of hadrons?

Big questions in QCD

- What is the structure of hadrons?
- How does it evolve with changing energy?

Big questions in QCD

- What is the structure of hadrons?
- How does it evolve with changing energy?
- Does the number of gluons grow infinitely?

Big questions in QCD

- What is the structure of hadrons?
- How does it evolve with changing energy?
- Does the number of gluons grow infinitely?
- Or does it saturate?

Deep Inelastic Scattering (DIS)

- Excellent tool to probe inner structure of hadrons.
- DIS cross section

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[y^{2} F_{1}\left(x, Q^{2}\right)+(1-y) \frac{F_{2}\left(x, Q^{2}\right)}{x}\right]
$$

- F_{1}, F_{2} - structure functions, include photon-proton interaction.

$$
\begin{array}{rlrl}
W_{\gamma^{*} p}^{2} & =(P+q)^{2} \\
Q^{2}=-q^{2} & =-\left(k-k^{\prime}\right)^{2} \\
x & =\frac{Q^{2}}{2 P \cdot q} & l(k) \longrightarrow
\end{array}
$$

Evolution of proton structure

- Composition of the proton changes with x and Q^{2}.
- At low energies proton dominated by valence quarks.
- At large energies gluons dominate.

Are gluon densities growing to infinity?

Figure: Diagram picturing the QCD evolution of the partonic structure of the proton.
C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

Are gluon densities growing to infinity?

Figure: Diagram picturing the QCD evolution of the partonic structure of the proton.
C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

Are gluon densities growing to infinity?

Figure: Diagram picturing the QCD evolution of the partonic structure of the proton.
C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

Are gluon densities growing to infinity?

- Evolution with increasing Q^{2} described by DGLAP equations.
- By fixing the scale of the process, one can fix the position in $\ln Q^{2}$.
- Going to smaller x, one can reach the saturation scale $Q_{S}^{2}(x)$
- Below $Q_{S}^{2}(x) \rightarrow$ dilute regime, linear evolution of the gluon density (BFKL).

Figure: Diagram picturing the QCD evolution of the partonic structure of the proton.
C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

Are gluon densities growing to infinity?

Figure: Diagram picturing the QCD evolution of the partonic structure of the proton.
C. Marquet, Nucl.Phys. A904-905 (2013) 294c-301c.

What other process is sensitive to the proton structure?

- Exclusive and dissociative production of vector mesons (VM).
- Advantage: Easily observable final state.

Figure: Diagrams for exclusive (a) and dissociative (b) production of vector mesons.

The color dipole picture

- The photon interacts via its $q \bar{q}$ Fock state with the proton in the target rest frame.
- At low x, lifetime of the fluctuation is larger than dipole-proton interaction time.

Figure: Schematic pictures of DIS and VM production within the color dipole approach.

Dipole-proton cross section

- From optical theorem

$$
\frac{\mathrm{d} \sigma_{q \bar{q}}}{\mathrm{~d} \vec{b}}=2 N(x, \vec{r}, \vec{b})
$$

Dipole-proton cross section

- From optical theorem

$$
\frac{\mathrm{d} \sigma_{q \bar{q}}}{\mathrm{~d} \vec{b}}=2 N(x, \vec{r}, \vec{b})
$$

- Dipole scattering amplitude $N(x, \vec{r}, \vec{b})$
- From a dipole model like GBW, IP-Sat, b-CGC
- From an evolution equation \rightarrow Balitsky-Kovchegov equation
- Note: impact-parameter dependence can be factorized out

$$
N(x, \vec{r}, \vec{b}) \rightarrow \sigma_{0} N(x, \vec{r}) T_{p}(\vec{b})
$$

Balitsky-Kovchegov equation at leading-order

$$
\begin{gathered}
\frac{\partial N\left(r_{x y}, b_{x y}, Y\right)}{\partial Y}=\int \mathrm{d} \overrightarrow{\mathrm{r}}_{x z} K\left(r_{x y}, r_{x z}, r_{z y}\right)\left[N\left(r_{x z}, b_{x z}, Y\right)+N\left(r_{z y}, b_{z y}, Y\right)\right. \\
\left.-N\left(r_{x y}, b_{x y}, Y\right)-N\left(r_{x z}, b_{x z}, Y\right) N\left(r_{z y}, b_{z y}, Y\right)\right] \\
Y=\ln \left(\frac{x_{0}}{x}\right)
\end{gathered}
$$

Balitsky-Kovchegov equation at leading-order

$$
\begin{gathered}
\frac{\partial N\left(r_{x y}, b_{x y}, Y\right)}{\partial Y}=\int \mathrm{d} \overrightarrow{\mathrm{r}}_{x z} K\left(r_{x y}, r_{x z}, r_{z y}\right)\left[N\left(r_{x z}, b_{x z}, Y\right)+N\left(r_{z y}, b_{z y}, Y\right)\right. \\
\left.-N\left(r_{x y}, b_{x y}, Y\right)-N\left(r_{x z}, b_{x z}, Y\right) N\left(r_{z y}, b_{z y}, Y\right)\right] \\
Y=\ln \left(\frac{x_{0}}{x}\right)
\end{gathered}
$$

Simplest kernel at LO:

$$
K_{\mathrm{BFKL}}\left(r_{x y}, r_{x z}, r_{z y}\right)=\bar{\alpha}_{S} \frac{r_{x y}}{r_{x z} r_{z y}} ; \quad \bar{\alpha}_{S}=\alpha_{S} \frac{N_{C}}{\pi} ; \quad \alpha_{S} \sim 1
$$

What steps can be taken to include higher order contributions?

- Include running of the coupling constant α_{S}

$$
\alpha_{S} \rightarrow \alpha_{S}(r)=\frac{4 \pi}{\beta_{n_{f}} \ln \left(\frac{4 C^{2}}{r^{2} \Lambda_{n_{f}}^{2}}\right)} ; \quad \beta_{n_{f}}=\frac{11}{3} N_{C}-\frac{2}{3} n_{f}
$$

- Various choices of the argument of $\alpha_{S}(r)$, most common:
- Parent dipole size $\alpha_{S}=\alpha_{S}\left(r_{x y}\right)$
- Smallest dipole prescription

$$
\alpha_{S}=\alpha_{S}\left(r_{\min }\right) ; \quad r_{\min }=\min \left\{r_{x y}, r_{x z}, r_{z y}\right\}
$$

Solution to BK equation at LO - fixed vs running coupling

What steps can be taken to include higher order contributions?

- Include running of the coupling constant α_{S}

What steps can be taken to include higher order contributions?

- Include running of the coupling constant αs
- Include higher order corrections of $\alpha_{S}(r)$

What steps can be taken to include higher order contributions?

- Include running of the coupling constant α_{S}
- Include higher order corrections of $\alpha_{S}(r)$
\rightarrow running coupling (rc) kernel by Balitsky

$$
K_{\mathrm{Bal}}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\bar{\alpha}_{S}\left(r_{x y}\right)}{2 \pi}\left[\frac{r_{\mathrm{xy}}^{2}}{r_{\mathrm{xz}}^{2} r_{\mathrm{zy}}^{2}}+\frac{1}{r_{\mathrm{xz}}^{2}}\left(\frac{\alpha_{S}\left(r_{x z}\right)}{\alpha_{S}\left(r_{z y}\right)}-1\right)+\frac{1}{r_{\mathrm{zy}}^{2}}\left(\frac{\alpha_{S}\left(r_{z y}\right)}{\alpha_{S}\left(r_{x z}\right)}-1\right)\right]
$$

What steps can be taken to include higher order contributions?

- Include running of the coupling constant α_{S}
- Include higher order corrections of $\alpha_{S}(r)$
\rightarrow running coupling (rc) kernel by Balitsky

$$
K_{\mathrm{Bal}}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\bar{\alpha}_{S}\left(r_{x y}\right)}{2 \pi}\left[\frac{r_{\mathrm{xy}}^{2}}{r_{\mathrm{xz}}^{2} r_{\mathrm{zy}}^{2}}+\frac{1}{r_{\mathrm{xz}}^{2}}\left(\frac{\alpha_{S}\left(r_{x z}\right)}{\alpha_{S}\left(r_{z y}\right)}-1\right)+\frac{1}{r_{\mathrm{zy}}^{2}}\left(\frac{\alpha_{S}\left(r_{z y}\right)}{\alpha_{S}\left(r_{x z}\right)}-1\right)\right]
$$

- Resums higher-order corrections associated with the running coupling.

What steps can be taken to include higher order contributions?

- Include running of the coupling constant α_{S}
- Include higher order corrections of $\alpha_{S}(r)$
\rightarrow running coupling (rc) kernel by Balitsky

$$
K_{\mathrm{Bal}}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\bar{\alpha}_{S}\left(r_{x y}\right)}{2 \pi}\left[\frac{r_{\mathrm{xy}}^{2}}{r_{\mathrm{xz}}^{2} r_{\mathrm{zy}}^{2}}+\frac{1}{r_{\mathrm{xz}}^{2}}\left(\frac{\alpha_{S}\left(r_{x z}\right)}{\alpha_{S}\left(r_{z y}\right)}-1\right)+\frac{1}{r_{\mathrm{zy}}^{2}}\left(\frac{\alpha_{S}\left(r_{z y}\right)}{\alpha_{S}\left(r_{x z}\right)}-1\right)\right]
$$

- Resums higher-order corrections associated with the running coupling.
- Slows down the evolution significantly.

What steps can be taken to include higher order contributions?

- Include running of the coupling constant α_{S}
- Include higher order corrections of $\alpha_{S}(r)$
\rightarrow running coupling (rc) kernel by Balitsky

$$
K_{\mathrm{Bal}}\left(r_{x y}, r_{x z}, r_{z y}\right)=\frac{\bar{\alpha}_{S}\left(r_{x y}\right)}{2 \pi}\left[\frac{r_{\mathrm{xy}}^{2}}{r_{\mathrm{xz}}^{2} r_{\mathrm{zy}}^{2}}+\frac{1}{r_{\mathrm{xz}}^{2}}\left(\frac{\alpha_{S}\left(r_{x z}\right)}{\alpha_{S}\left(r_{z y}\right)}-1\right)+\frac{1}{r_{\mathrm{zy}}^{2}}\left(\frac{\alpha_{S}\left(r_{z y}\right)}{\alpha_{S}\left(r_{x z}\right)}-1\right)\right]
$$

- Resums higher-order corrections associated with the running coupling.
- Slows down the evolution significantly.
- Very popular in phenomenological applications of LO BK.

Solution to LO BK equation - BFKL vs Balitsky kernel

Solution to rc-BK equation at LO - large rapidities

What steps can be taken to include higher order contributions?

- Include running of the α_{S}
- Include higher-order corrections in α_{S}

What steps can be taken to include higher order contributions?

- Include running of the α_{S}
- Include higher-order corrections in α_{S}
- Resummation of (large) logarithmic terms from NLO contributions
- Corrections where each power of α_{S} is accompanied by a double logarithm

What steps can be taken to include higher order contributions?

- Include running of the α_{S}
- Include higher-order corrections in α_{S}
- Resummation of (large) logarithmic terms from NLO contributions
- Corrections where each power of α_{S} is accompanied by a double logarithm
- Corrections with a collinear single-logarithmic term from pure NLO integrals

What steps can be taken to include higher order contributions?

- Include running of the α_{S}
- Include higher-order corrections in α_{S}
- Resummation of (large) logarithmic terms from NLO contributions
- Corrections where each power of α_{S} is accompanied by a double logarithm
- Corrections with a collinear single-logarithmic term from pure NLO integrals
- Results in so called collinearly-improved BK equation

$$
\begin{aligned}
& K_{c i}=\frac{\bar{\alpha}_{S}}{2 \pi} \frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}\left[\frac{r_{x y}^{2}}{\min \left\{r_{x z}^{2}, r_{z y}^{2}\right\}}\right]^{ \pm \bar{\alpha}_{S} A_{1}} K_{\mathrm{DLA}}(\rho), \\
& K_{\mathrm{DLA}}(\rho)=\frac{J_{1}\left(2 \sqrt{\bar{\alpha}_{S} \rho^{2}}\right)}{\sqrt{\bar{\alpha}_{S \rho}}}=1-\frac{\bar{\alpha}_{S} \rho^{2}}{2}+\frac{\left(\bar{\alpha}_{S} \rho^{2}\right)^{2}}{12}+\ldots \\
& \rho=\sqrt{L_{r_{x z} r_{x y}} L_{r_{z y}} r_{x y}} ; \quad L_{r_{i} r_{x y}}=\ln \left(\frac{r_{i}^{2}}{r_{x y}^{2}}\right) .
\end{aligned}
$$

- + in the exponent $\pm \bar{\alpha}_{S} A_{1}$ is taken when $r_{x y}<\min \left\{r_{x z}, r_{z y}\right\}$, the negative sign otherwise.
- Term $A_{1}=\frac{11}{12}$ gives an extra power-law suppresion of the kernel, treats single-transverse logarithms.

Solution to collinearly-improved BK equation

BK equation at next-to-leading order in its original form

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} Y} \operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{y}^{\dagger}\right\}= \\
& =\frac{\alpha}{2 \pi^{2}} \int \mathrm{~d}^{2} z \frac{\vec{r}_{x y}^{2}}{\vec{r}_{x z}^{2} \vec{r}_{z y}^{2}}\left\{1+\frac{\alpha}{4 \pi}\left[\beta_{n_{f}} \ln \left(\vec{r}_{x y}^{2} \mu^{2}\right)-\beta_{n_{f}} \frac{\vec{r}_{x z}^{2}-\vec{r}_{z y}^{2}}{\vec{r}_{x y}^{2}} \ln \frac{\vec{r}_{x z}^{2}}{\vec{r}_{z y}^{2}}+\left(\frac{67}{9}-\frac{\pi^{2}}{3}\right) N_{\mathrm{C}}-\frac{10}{9} n_{f}\right.\right. \\
& \left.\left.-2 N_{\mathrm{C}} \ln \frac{\vec{r}_{x z}^{2}}{\vec{r}_{x y}^{2}} \ln \frac{\vec{r}_{z y}^{2}}{\vec{r}_{x y}^{2}}\right]\right\} \times\left[\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{y}^{\dagger}\right\}-N_{\mathrm{C}} \operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{y}^{\dagger}\right\}\right] \\
& +\frac{\alpha_{S}^{2}}{16 \pi^{4}} \int \mathrm{~d}^{2} z \mathrm{~d}^{2} w\left[\left(-\frac{4}{\vec{r}_{z w}^{4}}+\left\{2 \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}+\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}-4 \vec{r}_{x y}^{2} \vec{r}_{z w}^{2}}{\vec{r}_{z w}^{4}\left[\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}-\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}\right]}+\frac{\vec{r}_{x y}^{4}}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}-\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\left[\frac{1}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}+\frac{1}{\vec{r}_{z y}^{2} \vec{r}_{x w}^{2}}\right]+\right.\right.\right. \\
& \left.\left.+\frac{\vec{r}_{x y}^{2}}{\vec{r}_{z w}^{2}}\left[\frac{1}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}-\frac{1}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right]\right\} \ln \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right) \times \\
& \times\left[\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{w}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{w} \hat{U}_{y}^{\dagger}\right\}-\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger} \hat{U}_{w} U_{y}^{\dagger} \hat{U}_{z} \hat{U}_{w}^{\dagger}\right\}-(w \rightarrow z)\right]+ \\
& +\left\{\frac{\vec{r}_{x y}^{2}}{\vec{r}_{z w}^{2}}\left[\frac{1}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}+\frac{1}{\vec{r}_{z y}^{2} \vec{r}_{x w}^{2}}\right]-\frac{\vec{r}_{x y}^{4}}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2} \vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right\} \ln \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}} \times \\
& \times\left[\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{w}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{w} \hat{U}_{y}^{\dagger}\right\}\right]+ \\
& +4 n_{f}\left\{\frac{4}{\vec{r}_{z w}^{4}}-2 \frac{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}+\vec{r}_{w y}^{2} \vec{r}_{x z}^{2}-\vec{r}_{x y}^{2} \vec{r}_{z w}^{2}}{\vec{r}_{z w}^{4}\left[\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}-\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}\right]} \ln \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right\} \times \\
& \left.\times\left[\operatorname{Tr}\left\{t^{a} \hat{U}_{x} t^{b} \hat{U}_{y}^{\dagger}\right\}\left(\operatorname{Tr}\left\{t^{a} \hat{U}_{z} t^{b} \hat{U}_{w}^{\dagger}\right\}-(w \rightarrow z)\right)\right]\right]
\end{aligned}
$$

Looks scary, so let's break it into individual parts

- First term corresponds to LO BK equation \rightarrow additional corrections $\sim \alpha_{S}^{2}$.

$$
\begin{aligned}
& \frac{\alpha S}{2 \pi^{2}} \int \mathrm{~d}^{2} z \frac{\vec{r}_{x y}^{2}}{\vec{r}_{x z}^{2} \vec{r}_{z y}^{2}}\left\{1+\frac{\alpha S}{4 \pi}\left[\beta_{n_{f}} \ln \left(\vec{r}_{x y}^{2} \mu^{2}\right)-\beta_{n_{f}} \frac{\vec{r}_{x z}^{2}-\vec{r}_{z y}^{2}}{\vec{r}_{x y}^{2}} \ln \frac{\vec{r}_{x z}^{2}}{\vec{r}_{z y}^{2}}+\right.\right. \\
&+\left.\left.\left(\frac{67}{9}-\frac{\pi^{2}}{3}\right) N_{\mathrm{C}}-\frac{10}{9} n_{f}-2 N_{\mathrm{C}} \ln \frac{\vec{r}_{x z}^{2}}{\vec{r}_{x y}^{2}} \ln \frac{\vec{r}_{z y}^{2}}{{\overrightarrow{r_{x y}}}_{2}^{2}}\right]\right\} \\
& \times {\left[\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{y}^{\dagger}\right\}-N_{\mathrm{C}} \operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{y}^{\dagger}\right\}\right] }
\end{aligned}
$$

Looks scary, so let's break it into individual parts

- Terms of order $\sim \alpha_{S}^{2}$ in double integrals (DI) \rightarrow fluctuations involving 2 additional partons at the time of the scattering beside the parent dipole.

Looks scary, so let's break it into individual parts

- Terms of order $\sim \alpha_{S}^{2}$ in double integrals (DI) \rightarrow fluctuations involving 2 additional partons at the time of the scattering beside the parent dipole.
- Term independent of n_{f} in DI - gluon part, both daughter partons are gluons

Looks scary, so let's break it into individual parts

- Terms of order $\sim \alpha_{S}^{2}$ in double integrals (DI) \rightarrow fluctuations involving 2 additional partons at the time of the scattering beside the parent dipole.
- Term independent of n_{f} in DI - gluon part, both daughter partons are gluons
- Parent dipole $\vec{r}_{x y}$ emits a gluon \rightarrow two daughter dipoles $\vec{r}_{x z}$ and $\vec{r}_{z y}$

Looks scary, so let's break it into individual parts

- Terms of order $\sim \alpha_{S}^{2}$ in double integrals (DI) \rightarrow fluctuations involving 2 additional partons at the time of the scattering beside the parent dipole.
- Term independent of n_{f} in DI - gluon part, both daughter partons are gluons
- Parent dipole $\vec{r}_{x y}$ emits a gluon \rightarrow two daughter dipoles $\vec{r}_{x z}$ and $\vec{r}_{z y}$
- Dipole $\vec{r}_{z y}$ emits a gluon at $\vec{w} \rightarrow$ fluctuates into $q \bar{q} \rightarrow$ daughter dipoles $\vec{r}_{x z}, \vec{r}_{z w}, \vec{r}_{w y}$

Looks scary, so let's break it into individual parts

- Terms of order $\sim \alpha_{S}^{2}$ in double integrals (DI) \rightarrow fluctuations involving 2 additional partons at the time of the scattering beside the parent dipole.
- Term independent of n_{f} in DI - gluon part, both daughter partons are gluons
- Parent dipole $\vec{r}_{x y}$ emits a gluon \rightarrow two daughter dipoles $\vec{r}_{x z}$ and $\vec{r}_{z y}$
- Dipole $\vec{r}_{z y}$ emits a gluon at $\vec{w} \rightarrow$ fluctuates into $q \bar{q} \rightarrow$ daughter dipoles $\vec{r}_{x z}, \vec{r}_{z w}, \vec{r}_{w y}$
- Cubic terms - real contribution, all daughter dipoles interact with the target
- Quadratic term - virtual contribution, dipole at \vec{w} emitted and reabsorbed before or after interaction, also substracts term with gluons emitted at $\vec{z}=\vec{w}$

$$
\begin{gathered}
+\frac{\alpha_{S}^{2}}{16 \pi^{4}} \int \mathrm{~d}^{2} z \mathrm{~d}^{2} w\left[\left(-\frac{4}{\vec{r}_{z w}^{4}}+\left\{2 \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}+\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}-4 \vec{r}_{x y}^{2} \vec{r}_{z w}^{2}}{\vec{r}_{z w}^{4}\left[\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}-\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}\right]}+\frac{\vec{r}_{x y}^{4}}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}-\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\left[\frac{1}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}+\frac{1}{\vec{r}_{z y}^{2} \vec{r}_{x w}^{2}}\right]+\right.\right.\right. \\
\left.\left.+\frac{\vec{r}_{x y}^{2}}{\vec{r}_{z w}^{2}}\left[\frac{1}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}-\frac{1}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right]\right\} \ln \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right) \times \\
\times\left[\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{w}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{w} \hat{U}_{y}^{\dagger}\right\}-\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger} \hat{U}_{w} u_{y}^{\dagger} \hat{U}_{z} \hat{U}_{w}^{\dagger}\right\}-(w \rightarrow z)\right]+ \\
+\left\{\frac{\vec{r}_{x y}^{2}}{\vec{r}_{z w}^{2}}\left[\frac{1}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}+\frac{1}{\vec{r}_{z y}^{2} \vec{r}_{x w}^{2}}\right]-\frac{\vec{r}_{x y}^{4}}{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2} \vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right\} \ln \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}} \times \\
\times\left[\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{w}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{w} \hat{U}_{y}^{\dagger}\right\}\right]+\text { quark part }
\end{gathered}
$$

Looks scary, so let's break it into individual parts

- Terms of order $\sim \alpha_{S}^{2}$ in double integrals (DI) \rightarrow fluctuations involving 2 additional partons at the time of the scattering beside the parent dipole.
- Quark part of NLO corrections $\sim n_{f} \rightarrow$ similar situation as with gluons, daughter partons at the time of the scattering are a quark or an anti-quark

$$
\begin{aligned}
\frac{\alpha_{S}^{2}}{16 \pi^{4}} \int \mathrm{~d}^{2} z \mathrm{~d}^{2} w & {\left[\text { gluon part }+4 n_{f}\left\{\frac{4}{\vec{r}_{z w}^{4}}-2 \frac{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}+\vec{r}_{w y}^{2} \vec{r}_{x z}^{2}-\vec{r}_{x y}^{2} \vec{r}_{z w}^{2}}{\vec{r}_{z w}^{4}\left[\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}-\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}\right]} \ln \frac{\vec{r}_{x z}^{2} \vec{r}_{w y}^{2}}{\vec{r}_{x w}^{2} \vec{r}_{z y}^{2}}\right\} \times\right.} \\
& \left.\times\left[\operatorname{Tr}\left\{t^{a} \hat{U}_{x} t^{b} \hat{U}_{y}^{\dagger}\right\}\left(\operatorname{Tr}\left\{t^{a} \hat{U}_{z} t^{b} \hat{U}_{w}^{\dagger}\right\}-(w \rightarrow z)\right)\right]\right]
\end{aligned}
$$

BK equation at NLO in the mean-field approximation

- Suppose a large N_{C} (3 is large enough :))

BK equation at NLO in the mean-field approximation

- Suppose a large $N_{C}(3$ is large enough :))

$$
\begin{aligned}
& \partial_{y} N\left(r_{x y}\right)= \int d^{2} z K_{a}\left[N\left(r_{x z}\right)+N\left(r_{z y}\right)-N\left(r_{x y}\right)-N\left(r_{x z}\right) N\left(r_{z y}\right)\right] \\
&+ \int d^{2} z d^{2} w K_{b}\left[N\left(r_{w y}\right)+N\left(r_{z w}\right)-N\left(r_{z y}\right)-N\left(r_{x z}\right) N\left(r_{z w}\right)-N\left(r_{x z}\right) N\left(r_{w y}\right)-\right. \\
&\left.-N\left(r_{z w}\right) N\left(r_{w y}\right)+N\left(r_{x z}\right) N\left(r_{z y}\right)+N\left(r_{x z}\right) N\left(r_{z w}\right) N\left(r_{w y}\right)\right] \\
&+\int d^{2} z d^{2} w K_{f}\left[N\left(r_{x w}\right)-N\left(r_{x z}\right)-N\left(r_{z y}\right) N\left(r_{x w}\right)+N\left(r_{x z}\right) N\left(r_{z y}\right)\right]
\end{aligned}
$$

BK equation at NLO in the mean-field approximation

- Suppose a large $N_{C}(3$ is large enough :))

$$
\begin{aligned}
& \partial_{Y} N\left(r_{x y}\right)= \int d^{2} z K_{a}\left[N\left(r_{x z}\right)+N\left(r_{z y}\right)-N\left(r_{x y}\right)-N\left(r_{x z}\right) N\left(r_{z y}\right)\right] \\
&+ \int d^{2} z d^{2} w K_{b}\left[N\left(r_{w y}\right)+N\left(r_{z w}\right)-N\left(r_{z y}\right)-N\left(r_{x z}\right) N\left(r_{z w}\right)-N\left(r_{x z}\right) N\left(r_{w y}\right)-\right. \\
&\left.-N\left(r_{z w}\right) N\left(r_{w y}\right)+N\left(r_{x z}\right) N\left(r_{z y}\right)+N\left(r_{x z}\right) N\left(r_{z w}\right) N\left(r_{w y}\right)\right] \\
&+\int d^{2} z d^{2} w K_{f}\left[N\left(r_{x w}\right)-N\left(r_{x z}\right)-N\left(r_{z y}\right) N\left(r_{x w}\right)+N\left(r_{x z}\right) N\left(r_{z y}\right)\right]
\end{aligned}
$$

- Definitely looks less scary!
- Single-integration term - corrections to LO BK associated with α_{S}^{2}
- Double integration term - pure NLO contributions

NLO kernels

$$
K_{a}=K_{\mathrm{Bal}}+\frac{\alpha_{S}^{2}\left(r_{x y}\right) N_{C}^{2}}{8 \pi^{3}} \frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}\left[\frac{67}{9}-\frac{\pi^{2}}{3}-\frac{10}{9} \frac{n_{f}}{N_{C}}-2 \ln \frac{r_{x z}^{2}}{r_{x y}^{2}} \ln \frac{r_{z y}^{2}}{r_{x y}^{2}}\right]
$$

- Belongs to term with single integration over transverse coordinate z
- Similar structure of the term as in LO BK equation + some NLO corrections
- NLO corrections $\sim \alpha_{S}^{2}$
- Note the double logarithm!

Purely NLO kernels

- Gluon part:

$$
\begin{aligned}
K_{b}=\frac{\alpha_{S}^{2} N_{C}^{2}}{8 \pi^{4}}(& -\frac{2}{r_{z w}^{4}}+\left[\frac{r_{x z}^{2} r_{w y}^{2}+r_{x w}^{2} r_{z y}^{2}-4 r^{2} r_{z w}^{2}}{r_{z w}^{4}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)}\right. \\
& \left.\left.+\frac{r_{x y}^{4}}{r_{x z}^{2} r_{w y}^{2}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)}+\frac{r_{x y}^{2}}{r_{x z}^{2} r_{w y}^{2} r_{z w}^{2}}\right] \ln \frac{r_{x z}^{2} r_{w y}^{2}}{r_{x w}^{2} r_{z y}^{2}}\right)
\end{aligned}
$$

Purely NLO kernels

- Gluon part:

$$
\begin{aligned}
K_{b}=\frac{\alpha_{S}^{2} N_{C}^{2}}{8 \pi^{4}}(& -\frac{2}{r_{z w}^{4}}+\left[\frac{r_{x z}^{2} r_{w y}^{2}+r_{x w}^{2} r_{z y}^{2}-4 r^{2} r_{z w}^{2}}{r_{z w}^{4}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)}\right. \\
& \left.\left.+\frac{r_{x y}^{4}}{r_{x z}^{2} r_{w y}^{2}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)}+\frac{r_{x y}^{2}}{r_{x z}^{2} r_{w y}^{2} r_{z w}^{2}}\right] \ln \frac{r_{x z}^{2} r_{w y}^{2}}{r_{x w}^{2} r_{z y}^{2}}\right)
\end{aligned}
$$

- Quark part:

$$
K_{f}=\frac{\alpha_{S}^{2} n_{f} N_{C}^{2}}{8 \pi^{4}}\left(\frac{2}{r_{z w}^{4}}-\frac{r_{x w}^{2} r_{z y}^{2}+r_{w y}^{2} r_{x z}^{2}-r_{x y}^{2} r_{z w}^{2}}{r_{z w}^{4}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)} \ln \frac{r_{x z}^{2} r_{w y}^{2}}{r_{x w}^{2} r_{z y}^{2}}\right)
$$

Purely NLO kernels

- Gluon part:

$$
\begin{aligned}
K_{b}=\frac{\alpha_{S}^{2} N_{C}^{2}}{8 \pi^{4}}(& -\frac{2}{r_{z w}^{4}}+\left[\frac{r_{x z}^{2} r_{w y}^{2}+r_{x w}^{2} r_{z y}^{2}-4 r^{2} r_{z w}^{2}}{r_{z w}^{4}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)}\right. \\
& \left.\left.+\frac{r_{x y}^{4}}{r_{x z}^{2} r_{w y}^{2}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)}+\frac{r_{x y}^{2}}{r_{x z}^{2} r_{w y}^{2} r_{z w}^{2}}\right] \ln \frac{r_{x z}^{2} r_{w y}^{2}}{r_{x w}^{2} r_{z y}^{2}}\right)
\end{aligned}
$$

- Quark part:

$$
K_{f}=\frac{\alpha_{S}^{2} n_{f} N_{C}^{2}}{8 \pi^{4}}\left(\frac{2}{r_{z w}^{4}}-\frac{r_{x w}^{2} r_{z y}^{2}+r_{w y}^{2} r_{x z}^{2}-r_{x y}^{2} r_{z w}^{2}}{r_{z w}^{4}\left(r_{x z}^{2} r_{w y}^{2}-r_{x w}^{2} r_{z y}^{2}\right)} \ln \frac{r_{x z}^{2} r_{w y}^{2}}{r_{x w}^{2} r_{z y}^{2}}\right)
$$

- Notice the single-logarithms and their collinear behavior in both kernels!

Numerical solutions to NLO BK equation

- NLO BK equation is numerically unstable
- Dipole amplitude can even turn negative - negative NLO corrections larger than LO contribution
- Stable solution obtained only for unphysically large values of some parameters

Numerical solutions to NLO BK equation

- NLO BK equation is numerically unstable
- Dipole amplitude can even turn negative - negative NLO corrections larger than LO contribution
- Stable solution obtained only for unphysically large values of some parameters
- Additional resumations of single and double logarithms needed \rightarrow results in a numerically stable equation

TL, HM - Phys. Rev., D93(9):094004, 2016

Choice of the proper evolution variable

- LC momenta of photon and proton:

$$
q^{\mu} \equiv\left(q^{+}, q^{-}, \vec{q}_{\perp}\right)=\left(q^{+},-\frac{Q^{2}}{2 q^{+}}, \overrightarrow{0}_{\text {perp }}\right) ; \quad P^{\mu}=\delta^{\mu^{-}} P^{-}
$$

Choice of the proper evolution variable

- LC momenta of photon and proton:

$$
q^{\mu} \equiv\left(q^{+}, q^{-}, \vec{q}_{\perp}\right)=\left(q^{+},-\frac{Q^{2}}{2 q^{+}}, \overrightarrow{0}_{\text {perp }}\right) ; \quad P^{\mu}=\delta^{\mu^{-}} P^{-}
$$

- There are two rapidities involved:

Choice of the proper evolution variable

- LC momenta of photon and proton:

$$
q^{\mu} \equiv\left(q^{+}, q^{-}, \vec{q}_{\perp}\right)=\left(q^{+},-\frac{Q^{2}}{2 q^{+}}, \overrightarrow{0}_{\text {perp }}\right) ; \quad P^{\mu}=\delta^{\mu^{-}} P^{-}
$$

- There are two rapidities involved:
- Target (hadron) rapidity $\eta \equiv \ln \frac{P^{-}}{\left|q^{-}\right|}=\ln \frac{2 q^{+} P^{-}}{Q^{2}}=\ln \frac{1}{x}$

Choice of the proper evolution variable

- LC momenta of photon and proton:

$$
q^{\mu} \equiv\left(q^{+}, q^{-}, \vec{q}_{\perp}\right)=\left(q^{+},-\frac{Q^{2}}{2 q^{+}}, \overrightarrow{0}_{\text {perp }}\right) ; \quad P^{\mu}=\delta^{\mu^{-}} P^{-}
$$

- There are two rapidities involved:
- Target (hadron) rapidity $\eta \equiv \ln \frac{P^{-}}{\left|q^{-}\right|}=\ln \frac{2 q^{+} P^{-}}{Q^{2}}=\ln \frac{1}{x}$
- Projectile (dipole) rapidity $Y \equiv \ln \frac{q^{+}}{q^{-}}=\ln \frac{2 q^{+} p^{-}}{Q_{0}^{2}}=\ln \frac{1}{x}+\ln \frac{Q^{2}}{Q_{0}^{2}}=\eta+\rho$

Choice of the proper evolution variable

- LC momenta of photon and proton:

$$
q^{\mu} \equiv\left(q^{+}, q^{-}, \vec{q}_{\perp}\right)=\left(q^{+},-\frac{Q^{2}}{2 q^{+}}, \overrightarrow{0}_{\text {perp }}\right) ; \quad P^{\mu}=\delta^{\mu^{-}} P^{-}
$$

- There are two rapidities involved:
- Target (hadron) rapidity $\eta \equiv \ln \frac{P^{-}}{\left|q^{-}\right|}=\ln \frac{2 q^{+} P^{-}}{Q^{2}}=\ln \frac{1}{x}$
- Projectile (dipole) rapidity $Y \equiv \ln \frac{q^{+}}{q^{-}}=\ln \frac{2 q^{+} p^{-}}{Q_{0}^{2}}=\ln \frac{1}{x}+\ln \frac{Q^{2}}{Q_{0}^{2}}=\eta+\rho$
- Target frame:
- Dense proton, emissions of soft gluons included in proton WF \rightarrow JIMWLK

Choice of the proper evolution variable

- LC momenta of photon and proton:
$q^{\mu} \equiv\left(q^{+}, q^{-}, \vec{q}_{\perp}\right)=\left(q^{+},-\frac{Q^{2}}{2 q^{+}}, \overrightarrow{0}_{\text {perp }}\right) ; \quad P^{\mu}=\delta^{\mu^{-}} P^{-}$
- There are two rapidities involved:
- Target (hadron) rapidity $\eta \equiv \ln \frac{P^{-}}{\left|q^{-}\right|}=\ln \frac{2 q^{+} P^{-}}{Q^{2}}=\ln \frac{1}{x}$
- Projectile (dipole) rapidity $Y \equiv \ln \frac{q^{+}}{q^{-}}=\ln \frac{2 q^{+} p^{-}}{Q_{0}^{2}}=\ln \frac{1}{x}+\ln \frac{Q^{2}}{Q_{0}^{2}}=\eta+\rho$
- Target frame:
- Dense proton, emissions of soft gluons included in proton WF \rightarrow JIMWLK
- Dipole frame:
- Evolution seen as successive gluon emissions within the dipole WF \rightarrow BK
- For $Q^{2} \gg Q_{0}^{2}$, emissions are strongly ordered in both long. and trans. momenta \rightarrow soft and collinear emissions \rightarrow DL contribution $\sim \alpha_{S} Y \rho$
- DL enhancement holds only when gluon lifetimes are also ordered

$$
\frac{2 q^{+}}{Q^{2}} \gg \frac{2 k_{1}^{+}}{k_{1, \perp}^{2}} \gg \ldots \gg \frac{2 q_{0}^{+}}{Q_{0}^{2}}
$$

Choice of the proper evolution variable

- Gluon lifetime ordering reduces evolution phase-space from Y to $Y-\rho \equiv \eta$

Choice of the proper evolution variable

- Gluon lifetime ordering reduces evolution phase-space from Y to $Y-\rho \equiv \eta$
- In BK, resumming series in $\alpha_{S} Y \rho$ instead of $\alpha_{S}(Y-\rho) \rho \rightarrow$ condition violated
\rightarrow double anti-collinear logarithms

Choice of the proper evolution variable

- Gluon lifetime ordering reduces evolution phase-space from Y to $Y-\rho \equiv \eta$
- In BK, resumming series in $\alpha_{S} Y \rho$ instead of $\alpha_{S}(Y-\rho) \rho \rightarrow$ condition violated
\rightarrow double anti-collinear logarithms
- NLO BK includes first arising negative contribution $\sim \alpha_{S} \rho^{2} \rightarrow$ evolution unstable

Choice of the proper evolution variable

- Gluon lifetime ordering reduces evolution phase-space from Y to $Y-\rho \equiv \eta$
- In BK, resumming series in $\alpha_{S} Y \rho$ instead of $\alpha_{S}(Y-\rho) \rho \rightarrow$ condition violated
\rightarrow double anti-collinear logarithms
- NLO BK includes first arising negative contribution $\sim \alpha_{s} \rho^{2} \rightarrow$ evolution unstable
- How to solve problem of unstability:

Choice of the proper evolution variable

- Gluon lifetime ordering reduces evolution phase-space from Y to $Y-\rho \equiv \eta$
- In BK, resumming series in $\alpha_{S} Y \rho$ instead of $\alpha_{S}(Y-\rho) \rho \rightarrow$ condition violated
\rightarrow double anti-collinear logarithms
- NLO BK includes first arising negative contribution $\sim \alpha_{s} \rho^{2} \rightarrow$ evolution unstable
- How to solve problem of unstability:
- Enforce time-ordering in the dipole frame \rightarrow collinearly-improved BK
\rightarrow leading terms OK, but subleading terms $\sim \alpha_{S}^{n} \rho^{2}$ for $n \geq 2$ aren't under control

Choice of the proper evolution variable

- Gluon lifetime ordering reduces evolution phase-space from Y to $Y-\rho \equiv \eta$
- In BK, resumming series in $\alpha_{S} Y \rho$ instead of $\alpha_{S}(Y-\rho) \rho \rightarrow$ condition violated
\rightarrow double anti-collinear logarithms
- NLO BK includes first arising negative contribution $\sim \alpha_{s} \rho^{2} \rightarrow$ evolution unstable
- How to solve problem of unstability:
- Enforce time-ordering in the dipole frame \rightarrow collinearly-improved BK
\rightarrow leading terms OK, but subleading terms $\sim \alpha_{S}^{n} \rho^{2}$ for $n \geq 2$ aren't under control
- Evolution is in Y, however physical results are in terms of η - not the same thing!

Choice of the proper evolution variable

- Gluon lifetime ordering reduces evolution phase-space from Y to $Y-\rho \equiv \eta$
- In BK, resumming series in $\alpha_{S} Y \rho$ instead of $\alpha_{S}(Y-\rho) \rho \rightarrow$ condition violated
\rightarrow double anti-collinear logarithms
- NLO BK includes first arising negative contribution $\sim \alpha s \rho^{2} \rightarrow$ evolution unstable
- How to solve problem of unstability:
- Enforce time-ordering in the dipole frame \rightarrow collinearly-improved BK
\rightarrow leading terms OK, but subleading terms $\sim \alpha_{S}^{n} \rho^{2}$ for $n \geq 2$ aren't under control
- Evolution is in Y, however physical results are in terms of η - not the same thing!
- Evolution in $\eta \rightarrow$ time-ordering preserved, no anti-collinear logs

Collinearly-improved BK in target rapidity

- Time-ordering is automatically satisfied, no large anti-collinear logs
- Double-log corrections in NLO still present, but suppressed

Collinearly-improved BK in target rapidity

- Time-ordering is automatically satisfied, no large anti-collinear logs
- Double-log corrections in NLO still present, but suppressed
- Further resummation leads to an equation non-local in η

$$
\frac{\partial S_{x y}(\eta)}{\partial \eta}=\int \mathrm{d}^{2} z \frac{\bar{\alpha}_{S}\left(r_{\min }\right)}{2 \pi} \frac{r_{x y}^{2}}{r_{x z}^{2} r_{z y}^{2}}\left(\frac{r_{x y}^{2}}{\min \left[r_{x z}, r_{z y}\right]}\right)^{ \pm A_{1}}\left[S_{x z}\left(\eta-\delta_{x z ; r}\right) S\left(\eta-\delta_{z y ; r}\right)-S(\eta)\right]
$$

- Rapidity shifts:

$$
\delta_{x z ; r} \equiv \max \left[0, \ln \frac{r_{x y}^{2}}{r_{x z}^{2}}\right]
$$

\rightarrow Non-zero for emissions where one of daughters \ll parent

- lancu et al. \rightarrow proposal of the equation, successful fits to HERA data

First NLO BK fits to DIS data

- First fit to HERA structure function data in CGC framework at NLO
- Only case with massless quarks considered

First NLO BK fits to DIS data

- First fit to HERA structure function data in CGC framework at NLO
- Only case with massless quarks considered
- Due to computational demands, full NLO BK approximated by resummation of large transverse logs

First NLO BK fits to DIS data

- First fit to HERA structure function data in CGC framework at NLO
- Only case with massless quarks considered
- Due to computational demands, full NLO BK approximated by resummation of large transverse logs
- Several forms:
- Nonlocal eq. in Y, collinear double logs resummed via kinematical constraint (KCBK)
- Local eq. in Y, double logs and DGLAP-like single logs resummed directly into kernel (ResumBK)
- Nonlocal eq. in target rapidity η (TBK)

First NLO BK fits to DIS data

- First fit to HERA structure function data in CGC framework at NLO
- Only case with massless quarks considered
- Due to computational demands, full NLO BK approximated by resummation of large transverse logs
- Several forms:
- Nonlocal eq. in Y, collinear double logs resummed via kinematical constraint (KCBK)
- Local eq. in Y, double logs and DGLAP-like single logs resummed directly into kernel (ResumBK)
- Nonlocal eq. in target rapidity η (TBK)
- Two approches to the fit:
- Light-quark contribution to structure functions calculated and compared to inclusive data in appropriate region
- Interpolated dataset with only light-quark contribution is constructed and fitted

First NLO BK fits to DIS data

- All equations provide equally reasonable description of both F_{2} data and pseudodata
- Q^{2} dependence of structure functions is weaker than in LO case
- All three setups predict almost the same F_{L} when compared to H 1 data
- In EIC kinematics (very low $x_{B j}$, the equations start to differ at very large Q^{2}

GB, HH, TL, HM - Phys. Rev., D102: 074028, 2020

First pheno results with NLO BK fits

- Exclusive heavy VM production at NLO

First pheno results with NLO BK fits

- Exclusive heavy VM production at NLO
- Two problems at NLO:

First pheno results with NLO BK fits

- Exclusive heavy VM production at NLO
- Two problems at NLO:
- Dipole cross section at NLO - calculated via NLO BK equation (or its approximations)

First pheno results with NLO BK fits

- Exclusive heavy VM production at NLO
- Two problems at NLO:
- Dipole cross section at NLO - calculated via NLO BK equation (or its approximations)
- Extension of the wave function to NLO accuracy

First pheno results with NLO BK fits

- Exclusive heavy VM production at NLO
- Two problems at NLO:
- Dipole cross section at NLO - calculated via NLO BK equation (or its approximations)
- Extension of the wave function to NLO accuracy
- In previous works by Beuf, Lappi, et al., - massless case derived (NLO DIS fits)
- Since 2021, WF with massive quarks are available for the longitudinal polarization

Summary

- From LO to NLO

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms
- Numerical instability (in some cases) and high computational demands

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms
- Numerical instability (in some cases) and high computational demands
- Proper choice of the evolution variable

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms
- Numerical instability (in some cases) and high computational demands
- Proper choice of the evolution variable
- N from NLO BK has to be matched with a wave function at NLO accuracy
\rightarrow available for massless quarks, for massive quarks only in some cases

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms
- Numerical instability (in some cases) and high computational demands
- Proper choice of the evolution variable
- N from NLO BK has to be matched with a wave function at NLO accuracy
\rightarrow available for massless quarks, for massive quarks only in some cases
- Our plans

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms
- Numerical instability (in some cases) and high computational demands
- Proper choice of the evolution variable
- N from NLO BK has to be matched with a wave function at NLO accuracy
\rightarrow available for massless quarks, for massive quarks only in some cases
- Our plans
- Incorporate η evolution into the LO b-BK (+ new fit) - Matěj?

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms
- Numerical instability (in some cases) and high computational demands
- Proper choice of the evolution variable
- N from NLO BK has to be matched with a wave function at NLO accuracy
\rightarrow available for massless quarks, for massive quarks only in some cases
- Our plans
- Incorporate η evolution into the LO b-BK (+ new fit) - Matěj?
- Extend η evolution from LO BK to our NLO BK code

Summary

- From LO to NLO
- Higher-order corrections $\sim \alpha_{S}^{2}$ to LO equation
- Corrections associated with emission of two daughter partons (quarks or gluons)
- Several problems of the NLO BK equation and its applications
- Collinear single logarithms and double-logarithmic terms
- Numerical instability (in some cases) and high computational demands
- Proper choice of the evolution variable
- N from NLO BK has to be matched with a wave function at NLO accuracy
\rightarrow available for massless quarks, for massive quarks only in some cases
- Our plans
- Incorporate η evolution into the LO b-BK (+ new fit) - Matěj?
- Extend η evolution from LO BK to our NLO BK code
- Incorporate b-dependence into the NLO calculation

