Vector meson production with hot spot model

Radim Dvořák

September 2021

4. miniworkshop difrakce a ultraperiferiálních srážek

Radim Dvořák

Content

- Structure of hadrons
- Parton model and evolution equations
- Production of vector mesons
- Hot spot model
- Differential cross-section
- Total cross-section
- Summary

Radim Dvořák

Structure of hadrons

- For studying structure of hadrons we can use deep inelastic scattering
- Interaction between electron and hadron

• Virtulatity
$$Q^2 = -(k - k')^2$$

• Bjorken
$$x = \frac{Q^2}{2Pq}$$

- For explanation of experimental results parton model was introduced
- Partons = quarks and gluons
- Parton has fraction of momentum xP

E IEL ČVUT

Evolution equations

- They describe development of structure of hadrons
- Higher virtuality \rightarrow higher resolution \rightarrow smaller partons
- Smaller Bjorken x → increasing number of partons
- For high energies (small x) \rightarrow saturation
- Transition between saturated and non-saturated region is given by Q²_s

Production of vector mesons

- Fundamental properties:
 - Content: $q\bar{q} (J/\Psi \rightarrow c\bar{c})$
 - Orbital angular momentum: 1, Parity: -1
- Production of vector mesons is sensitive to structure of hadrons
- Color dipole approach
- Amplitude of this process can be separated into:
 - Dipole cross-section
 - Overlap of wave function of virtual photon with wave function of vector meson

FIFLČVU

Corrections

Overlap of wave functions

- Overlap contains scalar part \rightarrow models
 - Gaussian
 - Boosted Gaussian

FJFI ČVUT

Radim Dvořák

Dipole cross-section

Dipole cross-section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\vec{b}} = 2N(x,\vec{b},\vec{r}) \to \sigma_0 N(x,\vec{r}) T_p(\vec{b})$$

▶ $T_p(\vec{b})$ - profile function of proton \rightarrow Gauss x Hot spot model

- σ_0 is from normalization of profile function
- \blacktriangleright Dipole amplitude can be taken from models \rightarrow GBW model

FIFI ČVUT

Radim Dvořák

Hot spot model

- ▶ Proton is modelled as cluster of areas with high color charge (hot spots) → variable structure
- Profile function:

$$T(\vec{b}) = rac{1}{N_{hs}} \sum_{i=1}^{N_{hs}} T_{hs}(\vec{b} - \vec{b_i}), \qquad T_{hs}(\vec{b} - \vec{b_i}) = rac{1}{2\pi B_{hs}} e^{-rac{(\vec{b} - \vec{b_i})^2}{2B_{hs}}}$$

FIFI ČVUT

T_{hs} profile function of hot spots, *B_{hs}* square radius of hot spots
 N_{hs} number of hot spots *b_i* → energy dependence of structure
 ⟨*N_{hs}*⟩ = *p*₀*x*^{*p*₁}(1 + *p*₂√*x*)

Hot spot model - implementation

- In hot spot model amplitude is calculated for large number of events
- ▶ Calculation $\langle N_{hs} \rangle \rightarrow$ calculation N_{hs} from modified Poisson distribution \rightarrow generation of $\vec{b_i} \rightarrow$ calculation of amplitude (cross-section)
- Middle value \rightarrow exclusive production
- Variance \rightarrow dissociative production
- Benefits: calculation of dissociative cross-section, integration over \vec{b} can be done analytically

Radim Dvořák

Differential cross-section

- Amplitude production VM \rightarrow differential cross-section
- Correction has large impact
- ln the graph there is photo production of J/Ψ
- Data are from HERA

FJELČVUT

Radim Dvořák

Differential cross-section

- Comparison between Gauss and hot spot model
- Gauss model has better results
- Hot spot model fluctuate for higher |t|

Radim Dvořák

Differential cross-section

- Differential cross-section for meson ϕ and ρ
- Results are in good agreement with data

Radim Dvořák

Total cross-section

- Integration of differential cross-section \rightarrow total cross-section
- \blacktriangleright Comparison between Gauss and hot spot for meson ho
- Data are from HERA and LHC
- ► Hot spot model → better results for electro production

FIFI ČVUT

Radim Dvořák

Total cross-section

- Comparison between Gauss and hot spot for meson J/Ψ
- Hot spot model \rightarrow better results
- Data are from HERA

14/17

FJFI ČVUT

Dissociative cross-section

- Dissociative cross-section of mesons J/Ψ a ρ
- For meson J/Ψ good agreement with data
- $\blacktriangleright \rho$ slightly worse results

FJFI ČVUT

Summary

- Results for vector mesons production in color dipole approach were shown
- GBW model for dipole cross-section and two models for overlap were used
- For structure of hadrons Gaussian and hot spot model were used
- Gauss model has better results for differential cross-section of J/Ψ
- Hot spot model has better results for total cross-section

FIFI ČVUT

Thank you for your attention

FJFI ČVUT

Radim Dvořák