A very brief introduction to percolation

Guillermo Contreras

Czech Technical University in Prague
Děčín
September 14, 2021

Definitions

Percolate: filter gradually through a porous surface or substance.
Oxford Dictionary

Definitions

Percolate: filter gradually through a porous surface or substance.
Oxford Dictionary

Percolation theory: describes the behaviour of a network when nodes or links are added.
Wikipedia

Definitions

Percolate: filter gradually through a porous surface or substance.
Oxford Dictionary

Percolation theory: describes the behaviour of a network when nodes or links are added.

There is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger, connected, so-called spanning cluster.

Definitions

Percolate: filter gradually through a porous surface or substance.
Oxford Dictionary

Percolation theory: describes the behaviour of a network when nodes or links are added.

There is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger, connected, so-called spanning cluster.

PERCOLATION PROCESSES

I. CRYSTALS AND MAZES

By S. R. BROADBENT and J. M. HAMMERSLEY

Received 15 August 1956

$A B S T R A C T$. The paper studies, in a general way, how the random properties of a 'medium' influence the percolation of a 'fluid' through it. The treatment differs from conventional diffusion theory, in which it is the random properties of the fluid that matter. Fluid and medium bear general interpretations: for example, solute diffusing through solvent, electrons migrating over an atomic lattice, molecules penetrating a porous solid, disease infecting a community, etc.

1. Introduction. There are many physical phenomena in which a fluid spreads randomly through a medium. Here fluid and medium bear general interpretations: we may be concerned with a solute diffusing through a solvent, electrons migrating over an atomic lattice, molecules penetrating a porous solid, or disease infecting a community. Besides the random mechanism, external forces may govern the process, as with water percolating through limestone under gravity. According to the nature of the problem, it may be natural to ascribe the random mechanism either to the fluid or to the medium. Most mathematical analyses are confined to the former alternative, for which we retain the usual name of diffusion process: in contrast, there is (as far as we know) little published work on the latter alternative, which we shall call a percolation process. The present paper is a preliminary exploration of percolation processes; and, although our conclusions are somewhat scanty, we hope we may encourage others to investigate this terrain, which has both pure mathematical fascinations and many practical applications.

Percolation in a lattice

Different types of lattices: dimensionality (2D, 3D, ...) and shape (square, honeycomb, ...)
Type of percolation: bond or site

2D site percolation in a lattice

Parenthesis: code to produce the plots

I have added to the agenda a piece of code to draw the lattices shown in the previous (and next) pages.

DrawLattice(int length, float frac)

Parenthesis: code to produce the plots

I have added to the agenda a piece of code to draw the lattices shown in the previous (and next) pages.

Parenthesis: code to produce the plots

I have added to the agenda a piece of code to draw the lattices shown in the previous (and next) pages.

To use it, enter root, compile and run. E.g.:

Parenthesis: code to produce the plots

I have added to the agenda a piece of code to draw the lattices shown in the previous (and next) pages.

Creates a lattice of size (length, length)

DrawLattice(int length, float frac)

To use it, enter root, compile and run. E.g.:	root [0] .L DrawLattice.C+g root [1] DrawLattice $(20,0.60)$ root [2] DrawLattice $(20,0.20)$

Critical behaviour at ≈ 0.59 : a cluster spans from one border to the other.

Behaviour at the critical concentration

The spanning cluster
can be 'destroyed' by removing few sites
Is 'infinite' but contains a 'vanishing' fraction of the occupied sites
It contains large holes: its mass varies as a power law with fractal exp.

Behaviour at the critical concentration

Other critical exponents

Other critical exponents

Other critical exponents

Distribution of cluster sizes and susceptibility

Let $n(p, m)$ be the number of clusters of size m at the concentration p.
One can define a 'free energy' using the generation function h :
$F=\Sigma n(p, m) \exp (-h m)$
(where the sum is over all clusters except the infinite one)

Let $n(p, m)$ be the number of clusters of size m at the concentration p.
One can define a 'free energy' using the generation function h :

$$
F=\Sigma n(p, m) \exp (-h m)
$$

(where the sum is over all clusters except the infinite one)

The first derivative, evaluated at $h=0$, is related to P_{∞} introduced in the previous slide The second derivative is related to the susceptibility

$$
\chi(p)=\Sigma m^{2} n(p, m) / p-\left|p-p_{c}\right|-r
$$

Percolation in practice

To learn something about percolation one studies random lattices of different sizes at different concentrations.
E.g. the critical exponents can be obtained by plotting their behaviour as a function of the lattice size.

Percolation in practice

To learn something about percolation one studies random lattices of different sizes at different concentrations.
E.g. the critical exponents can be obtained by plotting their behaviour as a function of the lattice size.

Algorithms

Algorithms

Key insight: Instead of computing for a given p (canonical ensamble) compute for a fixed number of occupied states (microcanonical ensamble) and convolute with a Binomial distribution to obtain an observable $Q(p)$

$$
Q(p)=\sum_{n}\binom{N}{n} p^{n}(1-p)^{N-n} Q_{n} .
$$

Key insight: Instead of computing for a given p (canonical ensamble) compute for a fixed number of occupied states (microcanonical ensamble) and convolute with a Binomial distribution to obtain an observable Q(p)

$$
Q(p)=\sum_{n}\binom{N}{n} p^{n}(1-p)^{N-n} Q_{n} .
$$

Algorithm for Qn
Sites are added in a random order starting with an empty lattice
\rightarrow each site gets a unique label and a weight
An added site can form a new cluster, join a single cluster or join together several clusters
\rightarrow use a tree structure to keep track of the belonging of a site to a cluster
\rightarrow use the weight to keep track of the size of the cluster
Measure Qn

Key insight: Instead of computing for a given p (canonical ensamble) compute for a fixed number of occupied states (microcanonical ensamble) and convolute with a Binomial distribution to obtain an observable Q(p)

$$
Q(p)=\sum_{n}\binom{N}{n} p^{n}(1-p)^{N-n} Q_{n} .
$$

Algorithm for Qn
Sites are added in a random order starting with an empty lattice
\rightarrow each site gets a unique label and a weight
An added site can form a new cluster, join a single cluster or join together several clusters
\rightarrow use a tree structure to keep track of the belonging of a site to a cluster
\rightarrow use the weight to keep track of the size of the cluster
Measure Qn

The Newman-Ziff algorithm: my code (1/3)

```
void sitePercolation(int length)
// length = size of one side of a 2D square lattice
{
    // initialise some internal variables
    int latticeSize = length*length; // lattice size
    int emptyCell = -(latticeSize+1); // mark empty cells
    std::vector<int> cellPointer(latticeSize,emptyCell); // assign cells to clusters
    // initialise observables
    int biggestCluster = 0;
    // initialise order of occupying the cells in the lattice
    std::vector<int> cellOrder(latticeSize); // create vector
    std::iota(cellOrder.begin(), cellOrder.end(), 0); // fill it form 0 to latticeSize-1
    std::shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order
    // initialise neighbors of cell
    std::vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours
    setCellNeigbhours(length,latticeSize,cellNeighbours);
    // percolate
    int s1, s2, r1, r2; // internal indices for the pointers vector
    for(int i=0; i<latticeSize; i++) { // loop over cells
```


The Newman-Ziff algorithm: my code (1/3)

void sitePercolation(int length)
// length $=$ size of one side of a 2D square lattice
\{
// initialise some internal variables
int latticeSize = length*length; // lattice size
int emptyCell = -(latticeSize+1); // mark empty cells
std::vector<int> cellPointer(latticeSize,emptyCell); // assign cells to clusters
// initialise observables
int biggestCluster = 0;
// initialise order of occupying the cells in the lattice
std::vector<int> cellOrder(latticeSize); // create vector
std::iota(cellOrder.begin(), cellOrder.end(), 0); // fill it form 0 to latticeSize-1
std::shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order
// initialise neighbors of cell
std::vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours setCellNeigbhours(length,latticeSize, cellNeighbours);
// percolate
int s1, s2, r1, r2; // internal indices for the pointers vector
for (int i=0; i<latticeSize; i++) \{ // loop over cells

The Newman-Ziff algorithm: my code (1/3)

void sitePercolation(int length)
// length $=$ size of one side of a 2D square lattice
\{
// initialise some internal variables
int latticeSize = length*length; // lattice size
int emptyCell = -(latticeSize+1); // mark empty cells
std::vector<int> cellPointer(latticeSize,emptyCell);
/ assign cells to clusters
// initialise observables
int biggestCluster = 0;

If empty, has a default value.

If part of a cluster points to its 'parent'. If root of cluster has minus the size of the cluster.
// initialise order of occupying the cells in the lattice std::vector<int> cellOrder(latticeSize); // create vector
std::iota(cellOrder.begin(), cellOrder.end(), 0); // fill it form 0 to latticeSize-1
std::shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order
// initialise neighbors of cell
std::vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours setCellNeigbhours(length,latticeSize, cellNeighbours);
// percolate
int s1, s2, r1, r2; // internal indices for the pointers vector
for (int i=0; i<latticeSize; i++) \{ // loop over cells

The Newman-Ziff algorithm: my code (1/3)

void sitePercolation(int length)
// length = size of one side of a 2D square lattice
\{
// initialise some internal variables
int latticeSize = length*length; // lattice size
int emptyCell = -(latticeSize+1); // mark empty cells
std::vector<int> cellPointer(latticeSize,emptyCell);
/ assign cells to clusters
// initialise observables
int biggestCluster = 0;

If empty, has a default value.

If part of a cluster points to its 'parent'. If root of cluster has minus the size of the cluster.
// initialise order of occupying the cells in the lattice std::vector<int> cellOrder(latticeSize); // create vector
std::iota(cellOrder.begin(), cellOrder.end(), 0); // fill it form 0 to latticeSize-1
std::shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order
// initialise neighbors of cell
std::vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours
setCellNeigbhours(length,latticeSize, cellNeighbours);
// percolate
int s1, s2, r1, r2; // internal indices for the pointers vector
Precompute the neighbours of each cell
for (int $i=0$; $i<l a t t i c e S i z e ; ~ i++) ~\{~ / / ~ l o o p ~ o v e r ~ c e l l s ~$

The Newman-Ziff algorithm: my code (2/3)

```
void setCellNeigbhours(int length, int latticeSize, vector<int> &cellNeighbours)
{
    for(int i=0;i<latticeSize;i++) {
        cellNeighbours[i] = (i+1)%latticeSize;
        cellNeighbours[i+latticeSize] = (i+latticeSize-1)%latticeSize;
        cellNeighbours[i+2*latticeSize] = (i+length)%latticeSize;
        cellNeighbours[i+3*latticeSize] = (i+latticeSize-length)%latticeSize;
        // wrap horizontally
        if(i%length==0) cellNeighbours[i+latticeSize] = i+length-1;
        if((i+1)%length==0) cellNeighbours[i] = i-length+1;
    }
}
```


The Newman-Ziff algorithm: my code (2/3)

The Newman-Ziff algorithm: my code (3/3)

```
// percolate
int s1, s2, r1, r2; // internal indices for the pointers vector
for(int i=0; i<latticeSize; i++) { // loop over cells
    r1 = s1 = cellOrder[i]; // new cell
    cellPointer[s1] = -1; // current size of the cluster
    for(int j=0;j<4;j++) {// loop over neighbours
        s2 = cellNeighbours[s1+j*latticeSize]; // index of neighbouring cell
        if(cellPointer[s2] != emptyCell) { // cell not empty, form a cluster
        r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
        if (r2 != r1) {// merge clusters: smaller cluster is absorved
            if (cellPointer[r1] > cellPointer[r2]) { // cluster size is negative for root nodes!
                cellPointer[r2] += cellPointer[r1];
                cellPointer[r1] = r2;
                r1 = r2;
            } else {
                cellPointer[r1] += cellPointer[r2];
                cellPointer[r2] = r1;
            }
            // fill the observable
                if (-cellPointer[r1]>biggestCluster) biggestCluster = -cellPointer[r1];
        } // end of merging
        } // end cell not empty
    } // end loop over neighbours
    // print out the observable
    std::cout << i << " " << biggestCluster << endl;
} // end loop over cells
```


The Newman-Ziff algorithm: my code (3/3)

```
// percolate
int s1, s2, r1, r2; // internal indices for the pointers vector
for(int i=0; i<latticeSize; i++) { // loop over cells
    r1 = s1 = cellOrder[i]; // new cell
    cellPointer[s1] = -1; // current size of the cluster
\(\square\)
    for(int j=0;j<4;j++) {// loop over neighbours
        s2 = cellNeighbours[s1+j*latticeSize]; // index of neighbouring cell
        if(cellPointer[s2] != emptyCell) { // cell not empty, form a cluster
        r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
        if (r2 != r1) {// merge clusters: smaller cluster is absorved
            if (cellPointer[r1] > cellPointer[r2]) { // cluster size is negative for root nodes!
                cellPointer[r2] += cellPointer[r1];
                cellPointer[r1] = r2;
                r1 = r2;
            } else {
                cellPointer[r1] += cellPointer[r2];
                cellPointer[r2] = r1;
            }
            // fill the observable
                if (-cellPointer[r1]>biggestCluster) biggestCluster = -cellPointer[r1];
        } // end of merging
        } // end cell not empty
    } // end loop over neighbours
    // print out the observable
    std::cout << i << " " << biggestCluster << endl;
} // end loop over cells
```


The Newman-Ziff algorithm: my code (3/3)

The Newman-Ziff algorithm: my code (3/3)

Loop over cells

Check each neighbour in turn
Check each neighbour in turn

If empty, done; If not, get the root of its cluster

The Newman-Ziff algorithm: my code (3/3)

```
// percolate
int s1, s2, r1, r2; // internal indices for the pointers vector
for(int i=0; i<latticeSize; i++) { // loop over cells
    r1 = s1 = cellOrder[i]; // new cell
    cellPointer[s1] = -1; // current size of the cluster
    for(int j=0;j<4;j++) {// loop over neighbours
        Study next cell
        __m
        s2 = cellNeighbours[s1+j*latticeSize]; // index of neighbouring cell
        if(cellPointer[s2] != emptyCell) { // cell not empty, form a cluster
        r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
        if (r2 != r1) {// merge clusters: smaller cluster is absorved
            if (cellPointer[r1] > cellPointer[r2]) { // cluster size is negative for root nodes!
cellPointer[r1] = r2;
                r1 = r2;
            } else {
                cellPointer[r1] += cellPointer[r2];
                cellPointer[r2] = r1;
            }
            // fill the observable
                if (-cellPointer[r1]>biggestCluster) biggestCluster = -cellPointer[r1];
        } // end of merging
        } // end cell not empty
    } // end loop over neighbours
    // print out the observable
    std::cout << i << " " << biggestCluster << endl;
} // end loop over cells
```

Loop over cells

```
int findroot(int i, vector<int> &cellPointer)
// implements path compression
```


The Newman-Ziff algorithm: my code (3/3)

```
// percolate
int s1, s2, r1, r2; // internal indices for the pointers vector
for(int i=0; i<latticeSize; i++) { // loop over cells
    r1 = s1 = cellOrder[i]; // new cell
    cellPointer[s1] = -1; // current size of the cluster
    for(int j=0;j<4;j++) {// loop over neighbours
        Study next cell
        next cell
        s2 = cellNeighbours[s1+j*latticeSize]; // index of neighbouring cell
        if(cellPointer[s2] != emptyCell) { // cell not empty, form a cluster
        r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
        if (r2 != r1) {// merge clusters: smaller cluster is absorved
            if (cellPointer[r1] > cellPointer[r2]) { // cluster size is negative for root nodes!
}
cellPointer[r2] += cellPointer[r1];
                lun}\begin{array}{l}{\mathrm{ cellPointer[r1] = r2; If r2; If needed, merge clusters}}\\{\mathrm{ r1= {}}
            } else {
                cellPointer[r1] += cellPointer[r2];
                cellPointer[r2] = r1;
            }
            // fill the observable
            if (-cellPointer[r1]>biggestCluster) biggestCluster = -cellPointer[r1];
        } // end of merging
        } // end cell not empty
    } // end loop over neighbours
    // print out the observable
    std::cout << i << " " << biggestCluster << endl;
} // end loop over cells
```

Loop over cells

```
int findroot(int i, vector<int> &cellPointer)
// implements path compression
{
{
    if (cellPointer[i]<0) return i;
    return cellPointer[i] = findroot(cellPointer[i],cellPointer);
```


The Newman-Ziff algorithm: my code (3/3)

The Newman-Ziff algorithm: my code (3/3)

Continuum percolation

Most real problems do not occur in a lattice, but in a continuum. The Newman-Ziff algorithm has been extended to this case

Continuum percolation

Continuum and lattice percolation are in the same universality class. They have the same critical exponents but different transition points.

Most real problems do not occur in a lattice, but in a continuum. The Newman-Ziff algorithm has been extended to this case

Continuum percolation: changes to the algorithm

Continuum percolation: changes to the algorithm

Mertens and Moore, PRE 86, 061109 (2012)

In this case the cells can overlap and there is not a fixed number of neighbours.

Some applications of interest today: Forest fire

Statics of a "self-organized" percolation model

Christopher L. Henley
Phys. Rev. Lett. 71, 2741 - Published 25 October 1993

Article	References	Citing Articles (74)	PDF	Export Citation

$>$

ABSTRACT

A stochastic "forest-fire" model is considered. Sites are filled individually at a constant mean rate; also, "sparks" are dropped at a small rate k, and instantaneously burn up the entire cluster they hit. I find nontrivial critical exponents in the self-organized critical limit $k \rightarrow 0$, contrary to earlier results of Drossel and Schwabl. Spatial correlation functions and a site occupancy correlation exponent are measured for the first time. Scaling relations, derived by analogy to uncorrelated percolation, are used extensively as numerical checks. Hyperscaling is violated in this system.

Some applications of interest today: Ecology

```
Ecology, 76(8), 1995, pp. 2446-2459 
```


CRITICAL THRESHOLDS IN SPECIES’ RESPONSES TO LANDSCAPE STRUCTURE¹

Kimberly A. With ${ }^{2}$
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038 USA

Thomas O. CRIST ${ }^{3}$
Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA
Abstract. Critical thresholds are transition ranges across which small changes in spatial pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a familiar example of a critical threshold. As the landscape becomes dissected into smaller parcels of habitat, landscape connectivity - the functional linkage among habitat patchesmay suddenly become disrupted, which may have important consequences for the distribution and persistence of populations. Landscape connectivity depends not only on the abundance and spatial patterning of habitat, but also on the habitat specificity and dispersal abilities of species. Habitat specialists with limited dispersal capabilities presumably have a much lower threshold to habitat fragmentation than highly vagile species, which may perceive the landscape as functionally connected across a greater range of fragmentation severity.

To determine where threshold effects in species' responses to landscape structure are likely to occur, we developed a simulation model modified from percolation theory. Our simulations predicted the distributional patterns of populations in different landscape mosaics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae) that occur in the shortgrass prairie of north-central Colorado. Increasing degree of habitat

Some applications of interest today: Ecology

Ecology, 76(8), 1995, pp. 2446-2459
Ecology, 1995 by the Ecological Society of America

CRITICAL THRESHOLDS IN SPECIES’ RESPONSES TO LANDSCAPE STRUCTURE ${ }^{1}$

Kimberly A. With ${ }^{2}$

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038 USA
Thomas O. CRIST ${ }^{3}$
Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA
Abstract. Critical thresholds are transition ranges across which small changes in spatial pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a familiar example of a critical threshold. As the landscape becomes dissected into smaller parcels of habitat, landscape connectivity - the functional linkage among habitat patchesmay suddenly become disrupted, which may have important consequences for the distribution and persistence of populations. Landscape connectivity depends not only on the abundance and spatial patterning of habitat, but also on the habitat specificity and dispersal abilities of species. Habitat specialists with limited dispersal capabilities presumably have a much lower threshold to habitat fragmentation than highly vagile species, which may perceive the landscape as functionally connected across a greater range of fragmentation severity.

To determine where threshold effects in species' responses to landscape structure are likely to occur, we developed a simulation model modified from percolation theory. Our simulations predicted the distributional patterns of populations in different landscape mosaics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae) that occur in the shortgrass prairie of north-central Colorado. Increasing degree of habitat

Some applications of interest today: Ecology

Ecology, 76(8), 1995, pp. 2446-2459

Ecology, $76(8), 1995$, pp. $2446-2459$
© 1995 by the Ecological Society of America

CRITICAL THRESHOLDS IN SPECIES' RESPONSES TO LANDSCAPE STRUCTURE ${ }^{1}$

Kimberly A. With ${ }^{2}$

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038 USA
Thomas O. CRIST ${ }^{3}$
Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA
Abstract. Critical thresholds are transition ranges across which small changes in spatial pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a familiar example of a critical threshold. As the landscape becomes dissected into smaller parcels of habitat, landscape connectivity - the functional linkage among habitat patchesmay suddenly become disrupted, which may have important consequences for the distribution and persistence of populations. Landscape connectivity depends not only on the abundance and spatial patterning of habitat, but also on the habitat specificity and dispersal abilities of species. Habitat specialists with limited dispersal capabilities presumably have a much lower threshold to habitat fragmentation than highly vagile species, which may perceive the landscape as functionally connected across a greater range of fragmentation severity.

To determine where threshold effects in species' responses to landscape structure are likely to occur, we developed a simulation model modified from percolation theory. Our simulations predicted the distributional patterns of populations in different landscape mosaics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae) that occur in the shortgrass prairie of north-central Colorado. Increasing degree of habitat

Two different types of grasshoppers simulated. Simulations describe observations.

Three types of cells
 Different probabilities of moving on the lattice.

Some applications of interest today: Media industry

Physica A: Statistical Mechanics and its
Applications
Volume 277, Issues 1-2, 1 March 2000, Pages 239-247

Social percolation models

```
Sorin Solomon a,b ᄋ \boxtimes, Gerard Weisbuch a},\mathrm{ , Lucilla de Arcangelis c, d, Naeem Jan ', Dietrich Stauffer c, e
Show more 
\infty}\mathrm{ O Share 5% Cite
```

https://doi.org/10.1016/S0378-4371(99)00543-9

Abstract

We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.

Some applications of interest today: Media industry

Physica A: Statistical Mechanics and its
Applications
Volume 277, Issues 1-2, 1 March 2000, Pages 239-247

Bi-modal distribution of market shares. Model with a lattice populated with agents. Quality as a weight for transport.


```
Show more V
\infty}\mathrm{ O Share 5% Cite
```

https://doi.org/10.1016/S0378-4371(99)00543-9

Abstract

We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.

Some applications of interest today: Media industry

Physica A: Statistical Mechanics and its
Applications

Volume 277, Issues 1-2, 1 March 2000, Pages 239-247

Bi-modal distribution of market shares.

Model with a lattice populated with agents.

Quality as a weight for transport.

Play with quality, preferences.
https://doi.org/10.1016/S0378-4371(99)00543-9

Abstract

We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.

Some applications of interest today: disease propagation

We study percolation on small-world networks, which has been proposed as a simple model of the propagation of disease. The occupation probabilities of sites and bonds correspond to the susceptibility of individuals to the disease, and the transmissibility of the disease respectively. We give an exact solution of the model for both site and bond percolation, including the position of the percolation transition at which epidemic behavior sets in, the values of the critical exponents governing this transition, the mean and variance of the distribution of cluster sizes (disease outbreaks) below the transition, and the size of the giant component (epidemic) above the transition.

Some applications of interest today: disease propagation

We study percolation on small-world networks, which has been proposed as a simple model of the propagation of disease. The occupation probabilities of sites and bonds correspond to the susceptibility of individuals to the disease, and the transmissibility of the disease respectively. We give an exact solution of the model for both site and bond percolation, including the position of the percolation transition at which epidemic behavior sets in, the values of the critical exponents governing this transition, the mean and variance of the distribution of cluster sizes (disease outbreaks) below the transition, and the size of the giant component (epidemic) above the transition.

Some applications of interest today: Network robustness

ABSTRACT

Recent work on the Internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes or links. Such deletions include, for example, the failure of Internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real-world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience.

Some applications of interest today: QCD and the QGP

Percolation Approach to Quark-Gluon Plasma and J / ψ Suppression

N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares

Phys. Rev. Lett. 77, 3736 - Published 28 October 1996

Article	References	Citing Articles (130)	PDF	Export Citation	
ABSTRACT It is shown that the critical threshold for percolation of the overlapping strings exchanged in heavy ion collisions can naturally explain the sharp strong suppression of J / ψ shown by the experimental data on central $\mathrm{Pb}-\mathrm{Pb}$ collisions, which does not occur in central $\mathrm{O}-\mathrm{U}$ and $\mathrm{S}-\mathrm{U}$ collisions.					

