4. miniworkshop difrakce a ultraperiferalnich srazek

A very brief introduction to percolation

Guillermo Contreras
Czech Technical University in Prague

Décin
September 14, 2021




Definitions

Percolate:

Oxford Dictionary




Definitions

Percolate:

Oxford Dictionary

Percolation theory:

Wikipedia




Definitions

Percolate:

Oxford Dictionary

Percolation theory:

Wikipedia

phase transition critical fraction

Wikipedia




Definitions

Percolate:

Oxford Dictionary

Percolation theory:

Wikipedia

universal critical exponents

Wikipedia

phase transition critical fraction

Wikipedia




The birth of percolation (1957)

Mathematical Proceedings of the Cambridge Philosophical
Society, Volume 53, Issue 3, July 1957, pp. 629 - 641

PERCOLATION PROCESSES
I. CRYSTALS AND MAZES

By S. R. BROADBENT axp J. M. HAMMERSLEY

Received 15 August 1956

ABSTRACT. The paper studies, in a general way, how the random properties of a ‘medium’
influence the percolation of a ‘fluid’ through it. The treatment differs from conventional diffu-
ston theory, in which it is the random properties of the fluid that matter. Fluid and medium
bear general interpretations: for example, solute diffusing through solvent, electrons migrating
over an atomic lattice, molecules penetrating a porous solid, disease infecting a community, etc.



https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/volume/B12EA3DD7B1CDFE06204AF39D9220BDE
https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/issue/8C87E10289BD4F74393C838E5F53BF0D

The birth of percolation (1957)

Mathematical Proceedings of the Cambridge Philosophical
Society , Volume 53, Issue 3, July 1957, pp. 629 - 641

1. Inmtroduction. There are many physical phenomena in which a flurd spreads
randomly through a medium. Here fluid and medium bear general interpretations:
we may be concerned with a solute diffusing through a solvent, electrons migrating
over an atomic lattice, molecules penetrating a porous solid, or disease infecting a
community. Besides the random mechanism, external forces may govern the process,
as with water percolating through limestone under gravity. According to the nature
of the problem, it may be natural to ascribe the random mechanism either to the luid
or to the medium. Most mathematical analyses are confined to the former alternative,
for which we retain the usual name of diffusion process: in contrast, there is (as far
as we know) little published work on the latter alternative, which we shall call a
percolation process. The present paper i1s a preliminary exploration of percolation
processes; and, although our conclusions are somewhat scanty, we hope we may
encourage others to investigate this terrain, which has both pure mathematical
fascinations and many practical applications.



https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/volume/B12EA3DD7B1CDFE06204AF39D9220BDE
https://www-cambridge-org.ezproxy.cern.ch/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/issue/8C87E10289BD4F74393C838E5F53BF0D

Percolation in a lattice

square




2D site percolation in a lattice




2D site percolation in a lattice

— e J——




2D site percolation in a lattice




2D site percolation in a lattice

properties




Parenthesis: code to produce the plots

DrawLattice(int length, float frac)



Parenthesis: code to produce the plots

length length

DrawLattice(int length, float frac)



Parenthesis: code to produce the plots

length length

DrawLattice(int length, float frac)

/




Parenthesis: code to produce the plots

length length

DrawLattice(int length, float frac)

root [@] .L DrawLattice.C+g
root [1] DrawlLattice 20,0.60
root [2] DrawLattice(20,0.20)









Behaviour at the critical concentration

infinite




Behaviour at the critical concentration

infinite

infinite




Behaviour at the critical concentration

infinite

infinite

91/48=1.9




Behaviour at the critical concentration

infinite

infinite

91/48=1.9

fractal dimension (ds)




Other critical exponents

Introduction to percolation theory,

Bunde and Kantelhardt

order parameter

103 ; = B
\ /.
: i P
e /| \¢&
OO Py 10
P

10



Other critical exponents

Introduction to percolation theory,

Bunde and Kantelhardt

order parameter
Poo B

10°

0 correlation length

10



Other critical exponents

Introduction to percolation theory,

Bunde and Kantelhardt

order parameter

10° Pee B
E,
S F,
0 correlation length




Distribution of cluster sizes and susceptibility

number of clusters

free energy

11



Distribution of cluster sizes and susceptibility

number of clusters

free energy

susceptibility

11



Percolation in practice

12



Percolation in practice

How to do this efficiently?

12



Algorithms

Percolation and cluster distribution. . Cluster multiple labeling
technique and critical concentration algorithm

J. Hoshen and R. Kopelman
Phys. Rev. B 14, 3438 — Published 15 October 1976

Article References Citing Articles (1,452) Export Citation

13



Algorithms

Percolation and cluster distribution. . Cluster multiple labeling
technique and critical concentration algorithm

J. Hoshen and R. Kopelman
Phys. Rev. B 14, 3438 — Published 15 October 1976

all p at once

Article References Citing Articles (1,452) Export Citation

Efficient Monte Carlo Algorithm and High-Precision Results for
Percolation

M. E. J. Newman and R. M. Ziff
Phys. Rev. Lett. 85, 4104 — Published 6 November 2000

Article References Citing Articles (330) ﬂ

Fast Monte Carlo algorithm for site or bond percolation

M. E. J. Newman and R. M. Ziff
Phys. Rev. E 64, 016706 — Published 27 June 2001

Article References Citing Articles (317)

ﬂ Export Citation

13



The Newman-Ziff algorithm

canonical
microcanonical Binomial

O(p) = Z(]Z)p”(l - p)N"0,.

14



The Newman-Ziff algorithm

canonical
microcanonical Binomial

O(p) = Z(Z)p”(l - p)N"0,.

n




The Newman-Ziff algorithm

canonical
microcanonical Binomial

O(p) = Z(Z)p”(l - p)N"0,.

n




The Newman-Ziff algorithm: my code (1/3)

void sitePercolation(int length)
// length = size of one side of a 2D square lattice
{
// 1initialise some internal variables
int latticeSize = length*length; // lattice size
int emptyCell = -(latticeSize+l); // mark empty cells
std: :vector<int> cellPointer(latticeSize,emptyCell); // assign cells to clusters

// initialise observables
int biggestCluster = 0;

// 1initialise order of occupying the cells in the lattice

std: :vector<int> cellOrder(latticeSize); // create vector

std: :1ota(cellOrder.begin(), cellOrder.end(), @); // fill it form @ to latticeSize-1
std: :shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order

// 1initialise neighbors of cell
std: :vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours
setCellNeigbhours(length,latticeSize,cellNeighbours);

// percolate
int s1, s2, rl, r2; // internal indices for the pointers vector
for(int 1=0; i<latticeSize; i++) { // loop over cells

15



The Newman-Ziff algorithm: my code (1/3)

void sitePercolation(int length)
// length = size of one side of a 2D square lattice
{
// initialise some internal variables
int latticeSize = length*length; // lattice size
int emptyCell = -(latticeSize+l); // mark empty cells
std: :vector<int> cellPointer(latticeSize,emptyCell); // assign cells to clusters

// initialise observables
int biggestCluster = 0;

// initialise order of occupying the cells in the lattice

std: :vector<int> cellOrder(latticeSize); // create vector

std: :1ota(cellOrder.begin(), cellOrder.end(), @); // fill it form @ to latticeSize-1
std: :shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order

// initialise neighbors of cell
std: :vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours
setCellNeigbhours(length,latticeSize,cellNeighbours);

// percolate
int s1, s2, rl, r2; // internal indices for the pointers vector
for(int 1=0; i<latticeSize; i++) { // loop over cells

15




The Newman-Ziff algorithm: my code (1/3)

void sitePercolation(int length)
// length = size of one side of a 2D square lattice
{
// 1initialise some internal variables
int latticeSize = length*length; // lattice size
int emptyCell = -(latticeSize+l); // mark empty cells
std: :vector<int> cellPointer(latticeSize,emptyCell); // assign cells to clusters

// initialise observables
int biggestCluster = 0;

// initialise order of occupying the cells in the lattice
std: :vector<int> cellOrder(latticeSize); // create vector
std: :1ota(cellOrder.begin(), cellOrder.end(), @); // fill it form @ to latticeSize-1

std: :shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order

// initialise neighbors of cell
std: :vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours
setCellNeigbhours(length,latticeSize,cellNeighbours);

// percolate
int s1, s2, rl, r2; // internal indices for the pointers vector
for(int 1=0; i<latticeSize; i++) { // loop over cells

15




The Newman-Ziff algorithm: my code (1/3)

void sitePercolation(int length)
// length = size of one side of a 2D square lattice
{
// 1initialise some internal variables
int latticeSize = length*length; // lattice size
int emptyCell = -(latticeSize+l); // mark empty cells
std: :vector<int> cellPointer(latticeSize,emptyCell); // assign cells to clusters

// initialise observables
int biggestCluster = 0;

// initialise order of occupying the cells in the lattice
std: :vector<int> cellOrder(latticeSize); // create vector
std: :1ota(cellOrder.begin(), cellOrder.end(), @); // fill it form @ to latticeSize-1

std: :shuffle(cellOrder.begin(), cellOrder.end(), std::random_device()); // suffle order

// initialise neighbors of cell
std: :vector<int> cellNeighbours(latticeSize*4); // each cell has 4 neighbours
setCellNeigbhours(length,latticeSize,cellNeighbours);

// percolate
int s1, s2, rl, r2; // internal indices for the pointers vector
for(int 1=0; i<latticeSize; i++) { // loop over cells

15




The Newman-Ziff algorithm: my code (2/3)

void setCellNeigbhours(int length, int latticeSize, vector<int> &cellNeighbours)

{

for(int 1=0;1<latticeSize;i++) {
cellNeighbours[i] = (1+1)%latticeSize;

cellNeighbours[i+latticeSize] = (i+latticeSize-1)%latticeSize;
cellNeighbours[i+3*latticeSize] = (i+latticeSize-length)%latticeSize;

// wrap horizontally
1f(1%length==0) cellNeighbours[i+latticeSize] = i+length-1;
1f((1+1)%length==0) cellNeighbours[i] = 1-length+1;

16



The Newman-Ziff algorithm: my code (2/3)

volid setCellNeigbhours(int length, int latticeSize, vector<int> &cellNeighbours)

{

for(int 1=0;1i<latticeSize;i++) {
cellNeighbours[i] = (1+1)%latticeSize;

cellNeighbours[i+latticeSize] = (i+latticeSize-1)¥%latticeSize;
cellNeighbours[i+2*latticeSize] = (i+length)%latticeSize; —
cellNeighbours[i+3*latticeSize] = (i+latticeSize-length)¥%latticeSize;

// wrap horizontally
1f(1%length==0) cellNeighbours[i+latticeSize] = i+length-1;

1f((1+1)%length==0) cellNeighbours[i] = 1-length+1;
}
: m




The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl, s2, rl, r2; // internal indices for the pointers vector
for(int 1=0; i<latticeSize; i++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster
for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] !'= emptyCell) { // cell not empty, form a cluster
r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
if (r2 !'= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size 1s negative for root nodes!
cellPointer[r2] += cellPointer[rl];
cellPointer[rl] = r2;
rl = r2;
} else {
cellPointer[rl] += cellPointer[r2];
cellPointer[r2] = ri;
}
// fill the observable
1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

17



The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl1, s2, rl, r2; // internal indices for the pointers vector

for(int 1=0; i<latticeSize; i1++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster

for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] !'= emptyCell) { // cell not empty, form a cluster
r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
i1f (r2 '= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size 1s negative for root nodes!
cellPointer[r2] += cellPointer[rl];
cellPointer[rl] = r2;
rl = r2;
} else {
cellPointer[rl] += cellPointer[r2];
cellPointer[r2] = ri;
}
// fill the observable
1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

17



The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl1, s2, rl, r2; // internal indices for the pointers vector

for(int 1=0; i<latticeSize; i1++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster

for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] !'= emptyCell) { // cell not empty, form a cluster
r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
i1f (r2 '= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size 1is negative for root nodes!
cellPointer[r2] += cellPointer[rl];
cellPointer[rl] = r2;
rl = r2;
} else {
cellPointer[rl] += cellPointer[r2];
cellPointer[r2] = ri;
}
// fill the observable
1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

17



The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl1, s2, rl, r2; // internal indices for the pointers vector

for(int 1=0; i<latticeSize; i++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster
for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] != emptyCell) { // cell not empty, form a cluster

rZ = findroot(s2,cellPointer); // find representative of the cluster of this cell
i1f (r2 '= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size 1is negative for root nodes!
cellPointer[r2] += cellPointer[rl];

cellPointer[rl] = r2;
rl = r2;
} else {
cellPointer[rl] += cellPointer[r2];
cellPointer[r2] = ri;
¥
// fill the observable
1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

17



The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl1, s2, rl, r2; // internal indices for the pointers vector

for(int 1=0; i<latticeSize; i++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster
for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] != emptyCell) { // cell not empty, form a cluster

rZ = findroot(s2,cellPointer); // find representative of the cluster of this cell
i1f (r2 '= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size 1is negative for root nodes!
cellPointer[r2] += cellPointer[rl];

cellPointer[rl] = r2; int findroot(int i, vector<int> &cellPointer)

rl = r2; // implements path compression
} else { {

cellPointer[rl] += cellPointer[r2]; if (cellPointer[i]<@) return i,

cellPointer[r2] = ri; return cellPointer[i] = findroot(cellPointer[i],cellPointer);
} }
// fill the observable e —

1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty (:)
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

L0 O

~
~

~
~
~

-
A

-—I——\~/-—I——‘l.

i
T i

17



The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl1, s2, rl, r2; // internal indices for the pointers vector

for(int 1=0; i<latticeSize; i++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster
for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] != emptyCell) { // cell not empty, form a cluster

rZ = findroot(s2,cellPointer); // find representative of the cluster of this cell
i1f (r2 '= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size 1is negative for root nodes!
cellPointer[r2] += cellPointer[ril];
cellPointer[rl] = r2; int findroot(int i, vector<int> &cellPointer)
rl = r2;
} else {

// implements path compression

{
cellPointer[rl] += cellPointer[r2]; if (cellPointer[1]<@) return i;
cellPointer[r2] = ri; return cellPointer[i] = findroot(cellPointer[i],cellPointer);
} }
// fill the observable ——

1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty (:)
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

L0 O

~
~

~
~
~

-
A

-—I——\~/-—I——‘l.

i
T i

17



The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl1, s2, rl, r2; // internal indices for the pointers vector

for(int 1=0; i<latticeSize; i++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster
for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] !'= emptyCell) { // cell not empty, form a cluster

r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
i1f (r2 '= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size is negative for root nodes!
cellPointer[r2] += cellPointer[ril];
cellPointer[rl] = r2; int findroot(int i, vector<int> &cellPointer)
rl = r2;
} else {

// implements path compression

{
cellPointer[rl] += cellPointer[r2]; if (cellPointer[1]<@) return i;
cellPointer[r2] = ri; return cellPointer[i] = findroot(cellPointer[i],cellPointer);
} }
// fill the observable e ———

1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

O

L0 O

~
~

~
~
~

-
A

-—I——\~/-—I——‘l.

TN




The Newman-Ziff algorithm: my code (3/3)

// percolate
int sl1, s2, rl, r2; // internal indices for the pointers vector

for(int 1=0; i<latticeSize; i1++) { // loop over cells
rl = sl = cellOrder[i]; // new cell
cellPointer[sl] = -1; // current size of the cluster
for(int 7=0;j<4;j++) {// loop over neighbours
s2 = cellNeighbours[sl+j*latticeSize]; // index of neighbouring cell
1f(cellPointer[s2] !'= emptyCell) { // cell not empty, form a cluster

r2 = findroot(s2,cellPointer); // find representative of the cluster of this cell
i1f (r2 '= rl) {// merge clusters: smaller cluster is absorved
1f (cellPointer[rl] > cellPointer[r2]) { // cluster size is negative for root nodes!
cellPointer[r2] += cellPointer[ril];
cellPointer[rl] = r2; int findroot(int i, vector<int> &cellPointer)
rl = r2;
} else {

// implements path compression

{
cellPointer[rl] += cellPointer[r2]; if (cellPointer[i1]<@) return 1i;
cellPointer[r2] = ri; return cellPointer[i] = findroot(cellPointer[i],cellPointer);
} }
// fill the observable e —

1f (-cellPointer[rl]>biggestCluster) biggestCluster = -cellPointer[rl];
} // end of merging
} // end cell not empty
} // end loop over neighbours
// print out the observable
std::cout << 1 << " " << biggestCluster << endl;
} // end loop over cells

O

L0 O

~
~

~
~
~

-
A

-—I——\~/-—I——‘l.

NN




Continuum percolation

continuum

Continuum percolation thresholds in two dimensions

Stephan Mertens and Cristopher Moore
Phys. Rev. E 86, 061109 — Published 7 December 2012

Article References Citing Articles (105) ﬂ

18




Continuum percolation

continuum

Continuum percolation thresholds in two dimensions

Stephan Mertens and Cristopher Moore
Phys. Rev. E 86, 061109 — Published 7 December 2012

Article References Citing Articles (105) m

18




Continuum percolation: changes to the algorithm

Mertens and Moore, PRE 86,
061109 (2012)

19



Continuum percolation: changes to the algorithm

Mertens and Moore, PRE 86,
061109 (2012)

19



Some applications of interest today: Forest fire

Statics of a “self-organized” percolation model

Christopher L. Henley
Phys. Rev. Lett. 71, 2741 — Published 25 October 1993

Article

References Citing Articles (74)

m Export Citation

A stochastic “forest-fire” model is considered. Sites are filled individually at a constant mean rate;
also, “sparks” are dropped at a small rate k, and instantaneously burn up the entire cluster they hit. |
find nontrivial critical exponents in the self-organized critical limit k—0, contrary to earlier results of
Drossel and Schwabl. Spatial correlation functions and a site occupancy correlation exponent are
measured for the first time. Scaling relations, derived by analogy to uncorrelated percolation, are used
extensively as numerical checks. Hyperscaling is violated in this system.

20



Some applications of interest today: Ecology

Ecology, 76(8), 1995, pp. 2446-2459
© 1995 by the Ecological Society of America

CRITICAL THRESHOLDS IN SPECIES’ RESPONSES TO
LANDSCAPE STRUCTURE!

KIMBERLY A. WITH?

Environmental Sciences Division, OQak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038 USA

THOMAS O. CRIST?
Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA

Abstract. Critical thresholds are transition ranges across which small changes in spatial
pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a
familiar example of a critical threshold. As the landscape becomes dissected into smaller
parcels of habitat, landscape connectivity—the functional linkage among habitat patches—
may suddenly become disrupted, which may have important consequences for the distri-
bution and persistence of populations. Landscape connectivity depends not only on the
abundance and spatial patterning of habitat, but also on the habitat specificity and dispersal
abilities of species. Habitat specialists with limited dispersal capabilities presumably have
a much lower threshold to habitat fragmentation than highly vagile species, which may
perceive the landscape as functionally connected across a greater range of fragmentation
severity.

To determine where threshold effects in species’ responses to landscape structure are
likely to occur, we developed a simulation model modified from percolation theory. Our
simulations predicted the distributional patterns of populations in different landscape mo-
saics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae)
that occur in the shortgrass prairie of north-central Colorado. Increasing degree of habitat

21



Some applications of interest today: Ecology

Ecology, 76(8), 1995, pp. 2446-2459
© 1995 by the Ecological Society of America

CRITICAL THRESHOLDS IN SPECIES" RESPONSES TO
LANDSCAPE STRUCTURE!

KIMBERLY A. WITH?
Environmental Sciences Division, Qak Ridge National Laboratory, Oak Ridge, Tennessee 3783 1-6038 USA

THOMAS O. CrisT?
Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA

Abstract. Critical thresholds are transition ranges across which small changes in spatial
pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a
familiar example of a critical threshold. As the landscape becomes dissected into smaller
parcels of habitat, landscape connectivity—the functional linkage among habitat patches—
may suddenly become disrupted, which may have important consequences for the distri-
bution and persistence of populations. Landscape connectivity depends not only on the
abundance and spatial patterning of habitat, but also on the habitat specificity and dispersal
abilities of species. Habitat specialists with limited dispersal capabilities presumably have
a much lower threshold to habitat fragmentation than highly vagile species, which may
perceive the landscape as functionally connected across a greater range of fragmentation
severity.

To determine where threshold effects in species’ responses to landscape structure are
likely to occur, we developed a simulation model modified from percolation theory. Our
simulations predicted the distributional patterns of populations in different landscape mo-
saics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae)
that occur in the shortgrass prairie of north-central Colorado. Increasing degree of habitat

21



Some applications of interest today: Ecology

Ecology, 76(8), 1995, pp. 2446-2459
© 1995 by the Ecological Society of America

CRITICAL THRESHOLDS IN SPECIES" RESPONSES TO
LANDSCAPE STRUCTURE!

KIMBERLY A. WITH?
Environmental Sciences Division, Qak Ridge National Laboratory, Oak Ridge, Tennessee 3783 1-6038 USA

THOMAS O. CRrisT?
Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA

Abstract. Critical thresholds are transition ranges across which small changes in spatial
pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a
familiar example of a critical threshold. As the landscape becomes dissected into smaller
parcels of habitat, landscape connectivity—the functional linkage among habitat patches—
may suddenly become disrupted, which may have important consequences for the distri-
bution and persistence of populations. Landscape connectivity depends not only on the
abundance and spatial patterning of habitat, but also on the habitat specificity and dispersal
abilities of species. Habitat specialists with limited dispersal capabilities presumably have
a much lower threshold to habitat fragmentation than highly vagile species, which may
perceive the landscape as functionally connected across a greater range of fragmentation
severity.

To determine where threshold effects in species’ responses to landscape structure are
likely to occur, we developed a simulation model modified from percolation theory. Our
simulations predicted the distributional patterns of populations in different landscape mo-
saics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae)
that occur in the shortgrass prairie of north-central Colorado. Increasing degree of habitat

21



Some applications of interest today: Media industry

AN Physica A: Statistical Mechanics and its e
S-S L

g BN Applications

ET SEVIER Volume 277, Issues 1-2, 1 March 2000, Pages 239-247 .

Social percolation models

Sorin Solomon # ® & & Gerard Weisbuch 2, Lucilla de Arcangelis © d Naeem Jan €, Dietrich Stauffer @ ©

Show more

& Share 99 Cite

https://doi.org/10.1016/S0378-4371(99)00543-9 Get rights and content

Abstract

We here relate the occurrence of extreme market shares, close to either 0 or 100%,
in the media industry to a percolation phenomenon across the social network of
customers. We further discuss the possibility of observing self-organized criticality
when customers and cinema producers adjust their preferences and the quality of
the produced films according to previous experience. Comprehensive computer
simulations on square lattices do indeed exhibit self-organized criticality towards
the usual percolation threshold and related scaling behaviour.

22



Some applications of interest today: Media industry

&i’*%\}“’%@ Physica A: Statistical Mechanics and its G

Py Aoolicati e ]
N pplications

FI SEVIER Volume 277, Issues 1-2, 1 March 2000, Pages 239-247 =

Social percolation models

Sorin Solomon P & & Gerard Weisbuch 2, Lucilla de Arcangelis © d Naeem Jan €, Dietrich Stauffer & ©

Show more

g Share 99 Cite

https://doi.org/10.1016/S0378-4371(99)00543-9 Get rights and content

Abstract

We here relate the occurrence of extreme market shares, close to either 0 or 100%,
in the media industry to a percolation phenomenon across the social network of
customers. We further discuss the possibility of observing self-organized criticality
when customers and cinema producers adjust their preferences and the quality of’
the produced films according to previous experience. Comprehensive computer
simulations on square lattices do indeed exhibit self-organized criticality towards
the usual percolation threshold and related scaling behaviour.

22



Some applications of interest today: Media industry

;w“":\‘:‘*"f’ﬁ; Physica A: Statistical Mechanics and its T
T g BN Applications
EL SEVIER Volume 277, Issues 1-2, 1 March 2000, Pages 239-247 —

Social percolation models

Sorin Solomon P & & Gerard Weisbuch 2, Lucilla de Arcangelis © d Naeem Jan €, Dietrich Stauffer & ©

Show more

& Share 99 Cite

https://doi.org/10.1016/S0378-4371(99)00543-9 Get rights and content

Abstract

We here relate the occurrence of extreme market shares, close to either 0 or 100%,
in the media industry to a percolation phenomenon across the social network of
customers. We further discuss the possibility of observing self-organized criticality
when customers and cinema producers adjust their preferences and the quality of’
the produced films according to previous experience. Comprehensive computer
simulations on square lattices do indeed exhibit self-organized criticality towards
the usual percolation threshold and related scaling behaviour.

22




Some applications of interest today: disease propagation

—xact solution of site and bond percolation on small-world
networks

Regular Small-world Random

Cristopher Moore and M. E. J. Newman
Phys. Rev. E 62, 7059 — Published 1 November 2000
Article References Citing Articles (123) m

p=0 » p=1
Increasing randomness

We study percolation on small-world networks, which has been proposed as a simple model of the
propagation of disease. The occupation probabilities of sites and bonds correspond to the
susceptibility of individuals to the disease, and the transmissibility of the disease respectively. We give
an exact solution of the model for both site and bond percolation, including the position of the
percolation transition at which epidemic behavior sets in, the values of the critical exponents
governing this transition, the mean and variance of the distribution of cluster sizes (disease outbreaks)
below the transition, and the size of the giant component (epidemic) above the transition.

23



Some applications of interest today: disease propagation

—xact solution of site and bond percolation on small-world

Watts, Strogat, Nature 393, 440—-442 (1998)
networks

Regular Small-world Random

Cristopher Moore and M. E. J. Newman
Phys. Rev. E 62, 7059 — Published 1 November 2000
Article References Citing Articles (123) m

p=0 » p=1
Increasing randomness

We study percolation on small-world networks, which has been proposed as a simple model of the
propagation of disease. The occupation probabilities of sites and bonds correspond to the
susceptibility of individuals to the disease, and the transmissibility of the disease respectively. We give
an exact solution of the model for both site and bond percolation, including the position of the
percolation transition at which epidemic behavior sets in, the values of the critical exponents
governing this transition, the mean and variance of the distribution of cluster sizes (disease outbreaks)
below the transition, and the size of the giant component (epidemic) above the transition.

23



Some applications of interest today: Network robustness

Network Robustness and Fragility: Percolation on Random Graphs

Duncan S. Callaway, M. E. J. Newman, Steven H. Strogatz, and Duncan J. Watts
Phys. Rev. Lett. 85, 5468 — Published 18 December 2000

Article References Citing Articles (1,511) m

Recent work on the Internet, social networks, and the power grid has addressed the resilience of
these networks to either random or targeted deletion of network nodes or links. Such deletions
iInclude, for example, the failure of Internet routers or power transmission lines. Percolation models on
random graphs provide a simple representation of this process but have typically been limited to
graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real-world
networks, which often possess power-law or other highly skewed degree distributions. In this paper
we study percolation on graphs with completely general degree distribution, giving exact solutions for
a variety of cases, including site percolation, bond percolation, and models in which occupation
probabilities depend on vertex degree. We discuss the application of our theory to the understanding

of network resilience.

24



Some applications of interest today: QCD and the QGP

Percolation Approach to Quark-Gluon Plasma and J /4
Suppression

N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares
Phys. Rev. Lett. 77, 3736 — Published 28 October 1996

2 =

Article References Citing Articles (130)

It is shown that the critical threshold for percolation of the overlapping strings exchanged in heavy ion
collisions can naturally explain the sharp strong suppression of J /1 shown by the experimental data
on central Pb-Pb collisions, which does not occur in central O-U and S-U collisions.

25



