Percolation approach applied to QCD

Dagmar Bendová

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

 $4^{\rm th}$ Miniworkshop of Diffraction and UPCs

14. 9. 2021, Děčín

Color strings and confinement

- Quarks and gluons are color-charged particles
- Single quarks and gluons are never seen isolated,

always form colorless hadrons

Color strings and confinement

- Quarks and gluons are color-charged particles
- Single quarks and gluons are never seen isolated, always form colorless hadrons
- The gluon field between the quarks forms a narrow flux tube (string)
- With increasing separation the string stretches, the field does not weaken $(lpha_{S}
 ightarrow 1)$
- At large separation a new $q\bar{q}$ pair is created
- Several hadronization models
 - \rightarrow the best know is Lund string model

Multiparticle production at high energies

• Color strings stretched between the projectile and target

Multiparticle production at high energies

- Color strings stretched between the projectile and target
- Observed hadrons produced from hadronization of these strings
- Low energies strings from valence quarks hadronize
- Number of strings grows with E and A

Clustering of color sources

- Color strings ightarrow small discs in the transverse space of area $\pi r_0^2;~r_0pprox 0.2~{
 m fm}$
- Discs are filled with color field created by colliding partons
 - \rightarrow similar to discs in 2D percolation theory

Clustering of color sources

- Color strings \rightarrow small discs in the transverse space of area πr_0^2 ; $r_0 \approx 0.2 ~{\rm fm}$
- Discs are filled with color field created by colliding partons
 → similar to discs in 2D percolation theory
- Growing E and $A \rightarrow$ number of strings grows and strings overlap
- Overlapping strings form clusters of color charge
- At some critical density of color strings, a macroscopic cluster appears
 - \rightarrow percolation phase transition

- Geometrical pattern of string clustering given by the percolation theory
- Dynamical approach needed to describe observable consequences
 - \rightarrow What is the behavior of a cluster formed by overlapping strings?

- Geometrical pattern of string clustering given by the percolation theory
- Dynamical approach needed to describe observable consequences
 - \rightarrow What is the behavior of a cluster formed by overlapping strings?
- Cluster behaves as a single string with higher color field \vec{Q}_n \rightarrow sum (vectors) of the individual color charges of the strings
- Resulting field covers area S_n of the cluster

- Geometrical pattern of string clustering given by the percolation theory
- Dynamical approach needed to describe observable consequences
 - \rightarrow What is the behavior of a cluster formed by overlapping strings?
- Cluster behaves as a single string with higher color field Q̂n
 → sum (vectors) of the individual color charges of the strings
- Resulting field covers area S_n of the cluster
- With more overlapping, multiplicity is suppressed and average transverse momentum squared is increased

$$\mu_n = \sqrt{\frac{nS_n}{S_1}}\mu_0; \qquad < p_T^2 > = \sqrt{\frac{nS_1}{S_n}} < p_T^2 >_1$$

Moreover

$$< \frac{nS_1}{S_n} >= \frac{\xi}{1-\mathrm{e}^{-\xi}} \equiv \frac{1}{F(\xi)^2}$$

- F(ξ) color suppression factor
- $\xi = \frac{N_S S_1}{S_N}$ percolation density parameter (finite for large N_S and S_N)
- Critical cluster spanning over total interaction area S_N appears for $\xi_C \ge 1.2$
- Multiplicity and average transverse momentum squared:

$$\mu_n = F(\xi)\mu_0; \qquad < p_T^2 >_n = \frac{< p_T^2 >_1}{F(\xi)}$$

Percolation approach to QGP and ${\rm J}/\psi$ suppression

Percolation Approach to Quark-Gluon Plasma and J/ψ Suppression

N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares Phys. Rev. Lett. **77**, 3736 – Published 28 October 1996

- Matsui & Satz PLB 178 (1986) 416-422
 - High energy heavy-ion collisions lead to formation of hot QGP
 - Screening of color charges
 - $c\bar{c}$ can't bind in the deconfined strongly interacting matter
 - J/ψ suppression in nuclear collisions

- Matsui & Satz PLB 178 (1986) 416-422
 - High energy heavy-ion collisions lead to formation of hot QGP
 - Screening of color charges
 - $c\bar{c}$ can't bind in the deconfined strongly interacting matter
 - J/ψ suppression in nuclear collisions
- From 80s experiments to create deconfined quark matter in CERN

- Matsui & Satz PLB 178 (1986) 416-422
 - High energy heavy-ion collisions lead to formation of hot QGP
 - Screening of color charges
 - $c\bar{c}$ can't bind in the deconfined strongly interacting matter
 - J/ψ suppression in nuclear collisions
- From 80s experiments to create deconfined quark matter in CERN
- Formation of QGP confirmed at RHIC from several observables (flow, jet-quenching, comparison to dAu) in 2004 – Nucl.Phys.A757 (2005) 102-183

- NA50 collaboration QM 1996, PLB 477 (2000) 28
 - ▶ Strong J/ψ suppression observed in central Pb-Pb at 158 AGeV/c per nucleon
 - Sharp enhancement of the suppression observed with increasing centrality
 - Suppression in peripheral Pb-Pb collisions comparable to central S-U
 - Evidence for deconfinement of quarks and gluons from the J/psi suppression pattern measured in Pb-Pb collisions at the CERN-SPS

Continuum percolation of color strings can describe difference in J/ψ suppression between central O-U and S-U collisions, peripheral Pb-Pb, and central Pb-Pb collisions.

Continuum percolation of color strings can describe difference in J/ψ suppression between central O-U and S-U collisions, peripheral Pb-Pb, and central Pb-Pb collisions.

Predictions for RHIC and LHC energies can be made.

- Color strings exchanged between the projectile and target
- Number of strings grow with E and A

- Color strings exchanged between the projectile and target
- Number of strings grow with E and A
- $\bullet\,$ High density $\rightarrow\,$ strings overlap and may fuse $\rightarrow\,$ new string with higher color charge

- Color strings exchanged between the projectile and target
- Number of strings grow with E and A
- $\bullet\,$ High density \rightarrow strings overlap and may fuse $\rightarrow\,$ new string with higher color charge
- Strings fuse when trans. positions are within interaction area a (fixed by expr. data)
- Transverse dimension of the string: $a = 2\pi r^2$
- For case of two-string fusion effective radius $r=0.36~{
 m fm}$

- Color strings exchanged between the projectile and target
- Number of strings grow with E and A
- $\bullet\,$ High density \rightarrow strings overlap and may fuse $\rightarrow\,$ new string with higher color charge
- Strings fuse when trans. positions are within interaction area *a* (fixed by expr. data)
- Transverse dimension of the string: $a = 2\pi r^2$
- For case of two-string fusion effective radius r = 0.36 fm
- The region where many strings fuse droplet of QGP
- $\bullet\,$ Droplets overlap \to QGP domain of size comparable to the nuclear size
 - $\rightarrow \text{percolation}$

ullet Inside QGP domain, J/ψ can't be formed \rightarrow suppression

- ullet Inside QGP domain, J/ψ can't be formed \rightarrow suppression
- Percolation happens when density of strings rises above some critical density
 - \rightarrow paths of overlapping ''circles'' \rightarrow color conductor
- Percolation threshold

$$\xi_C = \pi r^2 n_C$$

- ullet Inside QGP domain, J/ψ can't be formed \rightarrow suppression
- Percolation happens when density of strings rises above some critical density
 - \rightarrow paths of overlapping "circles" \rightarrow color conductor
- Percolation threshold

$$\xi_C = \pi r^2 n_C$$

• From Monte Carlo (and other methods) – $\xi_{C} pprox 1.2 - 1.7$

 $\rightarrow n_C \approx 9 \ {\rm strings}/{\rm fm}^2$

- ullet Inside QGP domain, J/ψ can't be formed \rightarrow suppression
- Percolation happens when density of strings rises above some critical density
 - \rightarrow paths of overlapping "circles" \rightarrow color conductor
- Percolation threshold

$$\xi_C = \pi r^2 n_C$$

• From Monte Carlo (and other methods) – $\xi_{\mathcal{C}} \approx 1.2 - 1.7$

 \rightarrow $n_C \approx 9 \ {\rm strings/fm^2}$

• Additional changes like repulsive interaction, hard core or different shape of strings don't change the result much

Results of the percolation approach to QGP

- At SPS energies, critical density reached only in central Pb-Pb collisions
- Strong suppression of J/ψ production observed only in central Pb-Pb at SPS
- Suppression also expected in central S-U at RHIC and S-S at the LHC

\sqrt{s} (AGeV)		Collision		
	p-p	S-S	S-U	Pb - Pb
19.4	4.2	123	268	1145
	1.3	3.5	7.6	9.5
200	7.2	215	382	1703
	1.6	6.1	10.9	14.4
5500	13.1	380	645	3071
	2.0	10.9	18.3	25.6

Other results

• Over the time, QGSM/CSPM has been used to predict many observables

Other results

- Over the time, QGSM/CSPM has been used to predict many observables
 - Fluctuations in the transverse momentum
 - Transverse momentum distributions
 - Correlations

Other results

- Over the time, QGSM/CSPM has been used to predict many observables
 - Fluctuations in the transverse momentum
 - Transverse momentum distributions
 - Correlations
 - QGP properties temperature, energy density, trace anomaly, shear viscosity, EoS

Pajares et al., see e.g. Eur.Phys.J.C43:9-14,2005 or PoS(LHCP2019)004

• Color strings percolation model is a saturation model

- Color strings percolation model is a saturation model
- Color strings span over some area in the hadron's transverse space
- With increasing energy (and A), number of strings is growing

- Color strings percolation model is a saturation model
- Color strings span over some area in the hadron's transverse space
- With increasing energy (and A), number of strings is growing
- $\bullet\,$ At some point, they start to overlap and interact $\rightarrow\,$ recombination

- Color strings percolation model is a saturation model
- Color strings span over some area in the hadron's transverse space
- With increasing energy (and A), number of strings is growing
- $\bullet\,$ At some point, they start to overlap and interact $\rightarrow\,$ recombination
- Results in the suppression of particle multiplicity

- Color strings percolation model is a saturation model
- Color strings span over some area in the hadron's transverse space
- With increasing energy (and A), number of strings is growing
- ullet At some point, they start to overlap and interact \rightarrow recombination
- Results in the suppression of particle multiplicity
- $\frac{<p_T^2>_1}{F(\xi)}$ plays the role of saturation scale Q_s^2 from CGC

• Also similar to other CGC-inspired models, namely hot-spot model

- Also similar to other CGC-inspired models, namely hot-spot model
 - Here $\xi_C = 1.5$ for Gaussian distribution
 - In our hot-spot model $\xi_C = 1.5 = N(W_{GSS}) \cdot B_{hs}/B_p$

 $\rightarrow N(W_{GSS})$ is the number of hot spots in a point where dissociative cross section reaches its maximum for the given scale ($Q^2 + M^2$) – see PRD 99, 034025, 2019

- Also similar to other CGC-inspired models, namely hot-spot model
 - Here $\xi_C = 1.5$ for Gaussian distribution
 - In our hot-spot model $\xi_C = 1.5 = N(W_{GSS}) \cdot B_{hs}/B_p$

 \rightarrow N(W_{GSS}) is the number of hot spots in a point where dissociative cross section reaches its maximum for the given scale (Q² + M²) – see PRD 99, 034025, 2019

No satisfactory general agreement :(

- Particle production in high-energy collisions can be explained by the hadronization of color strings
- Number/density of strings grows with E and A

- Particle production in high-energy collisions can be explained by the hadronization of color strings
- Number/density of strings grows with E and A
- In a geometrical approach, strings can be seen as areas of color charge in transverse space
- At large densities, strings overlap and form clusters

- Particle production in high-energy collisions can be explained by the hadronization of color strings
- Number/density of strings grows with E and A
- In a geometrical approach, strings can be seen as areas of color charge in transverse space
- At large densities, strings overlap and form clusters
- Above critical threshold \rightarrow macroscopic cluster \rightarrow domain of QGP stretching over nuclear size \rightarrow percolation

- Particle production in high-energy collisions can be explained by the hadronization of color strings
- Number/density of strings grows with E and A
- In a geometrical approach, strings can be seen as areas of color charge in transverse space
- At large densities, strings overlap and form clusters
- Above critical threshold \rightarrow macroscopic cluster \rightarrow domain of QGP stretching over nuclear size \rightarrow percolation
- Inside QGP domain J/ψ melted, can't be formed \rightarrow suppression
- CSPM can also predict other QGP properties (temperature, energy density, etc.)

- Particle production in high-energy collisions can be explained by the hadronization of color strings
- Number/density of strings grows with E and A
- In a geometrical approach, strings can be seen as areas of color charge in transverse space
- At large densities, strings overlap and form clusters
- Above critical threshold \rightarrow macroscopic cluster \rightarrow domain of QGP stretching over nuclear size \rightarrow percolation
- Inside QGP domain J/ψ melted, can't be formed ightarrow suppression
- CSPM can also predict other QGP properties (temperature, energy density, etc.)
- There is an analogy/similarity to saturation model in CGC framework.