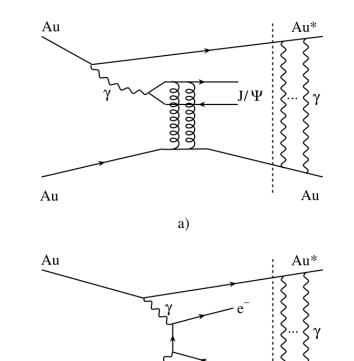
Coherent J/ψ photoproduction with forward neutrons

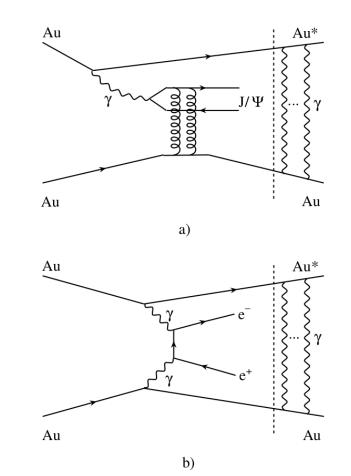
Michal Broz


Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

- Nuclear break-up in UPC
- ZDC selection
- Ingredients for cross section
- Cross section

UPC and nuclear break-up

- Relativistic heavy ions are accompanied by high photon fluxes due to their large electric charge and the strongly Lorentz contracted electric fields.
- At impact parameters large enough so that no hadronic interactions occur, the photonuclear interactions can be seen: these are Ultra-Peripheral Collisions (UPCs)
- Because of the high photon flux, the UPC events have a high probability to be accompanied by additional photon exchanges that excite one or both of the ions



Au

Au

UPC and nuclear break-up

- Experimentally, requiring mutual Coulomb excitation along with VM production may lead to a trigger with a higher purity, allowing more events to be collected than for the VM state by itself
- Neutron-differential studies are considered as a promising tool to decouple low-x and high-x contributions in vector meson photo-production
- STAR and CMS used requirement on forward neutrons in their UPC triggers
- ALICE measured event fractions of various break-up scenarios

Ambiguity in photon source

- Vector meson cross section in Pb–Pb UPC = sum of two terms
 - Either of the ions can be photon source:

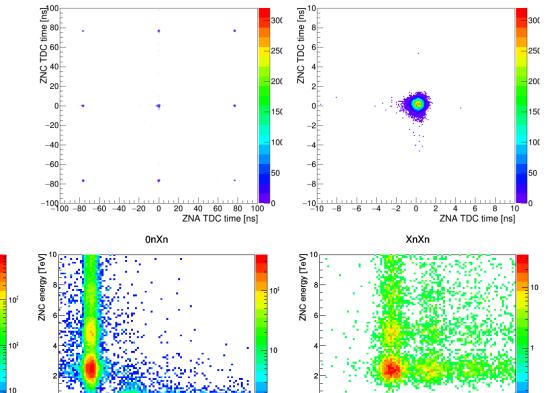
 $\sigma(y) = n(+y)\sigma_{\gamma\rm Pb}(+y) + n(-y)\sigma_{\gamma\rm Pb}(-y)$

- Photoproduction cross sections σ_{γPb}(y) σ_{γPb}(-y) are coupled
 Cannot be extracted from the measured cross section
- Can be decoupled by measuring additional neutron activity

$$\begin{split} \sigma_{0\mathrm{N}0\mathrm{N}}(y) &= n_{0\mathrm{N}0\mathrm{N}}(+y)\sigma_{\gamma\mathrm{Pb}}(+y) + n_{0\mathrm{N}0\mathrm{N}}(-y)\sigma_{\gamma\mathrm{Pb}}(-y),\\ \sigma_{0\mathrm{N}\mathrm{X}\mathrm{N}}(y) &= n_{0\mathrm{N}\mathrm{X}\mathrm{N}}(+y)\sigma_{\gamma\mathrm{Pb}}(+y) + n_{0\mathrm{N}\mathrm{X}\mathrm{N}}(-y)\sigma_{\gamma\mathrm{Pb}}(-y), \end{split}$$

Analysis details

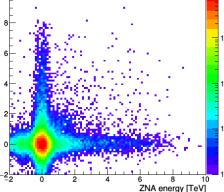
- This analysis is a follow-up of the midrapidity J/ψ analysis
 - Goal: Extract coherent cross section in neutron emission classes
- 3 emission classes(0n0n, 0nXn, XnXn) and 3 |y| bins
 - $\,\circ\,\,$ Xn±: With neutrons in/in opposite direction of J/ψ
 - 2D analysis with 12 bins
 - But **not** every piece of the analysis is both rapidity and neutron emission dependent (only yield is)
- To enhance the statistics -> Merge the electron and muon channels
 - No PID is used in this analysis
 - Invariant mass and p_T distributions from MC are merged with weights corresponding to efficiency in electron/muon channel
 - $MC_{lepton} = \varepsilon_e * MC_e + \varepsilon_\mu * MC_\mu$


Analysis details

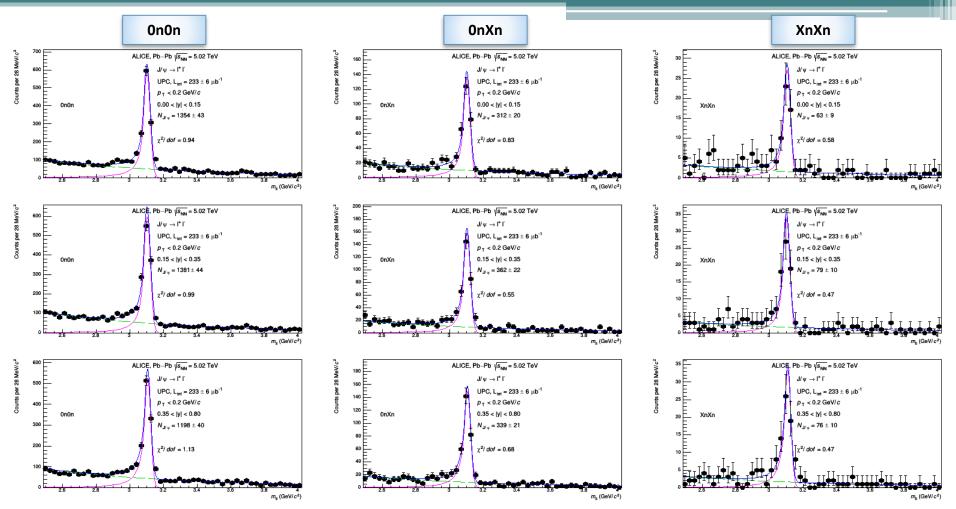
- LHC18q+LHC18r, running on ESDs (train 250)
 - Exactly the same data sample as in the charmonia paper analysis
- Empty offline AD and VZERO veto
- Search for events with exactly two good tracks
- Good track = AliESDtrackCuts::GetStandardITSTPCTrackCuts2011(kFALSE,1) + 2SPD clusters per track
 - Bit 4 equivalent + 2SPD clusters per track
- Matching of SPD clusters to the FO fired chips and re-checking the STG trigger condition with matched FO chips
- Asking both tracks to be in $|\eta| < 0.8$
- Cut on additional tracks with GetStandardTPCOnlyTrackCuts()+1SPD cluster and GetStandardITSSATrackCuts2010(kFALSE,kTRUE) has effect of ~1%, not used here

ZDC selection

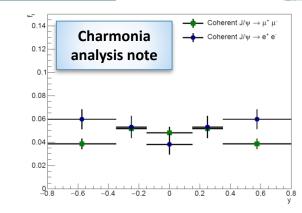
- Neutron emission classes are selected using timing information from ZDC
 - fZNCTDCm[4], fZNATDCm[4]
 - |fTDCm[i]| < 5ns
- Seems to select correctly the 0n...Xn peaks in ZNA/ZNC energy spectra

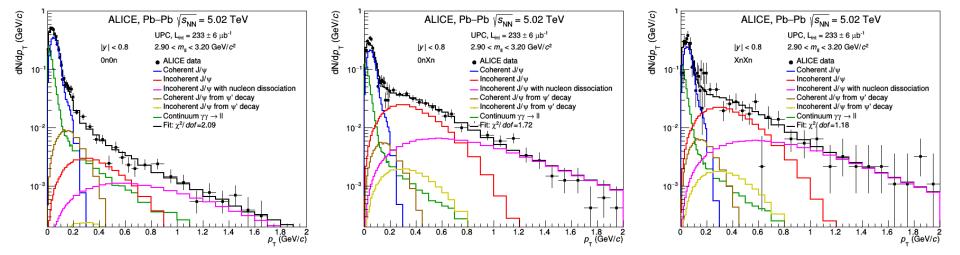

ZNC energy [TeV]

ZNA energy [TeV]

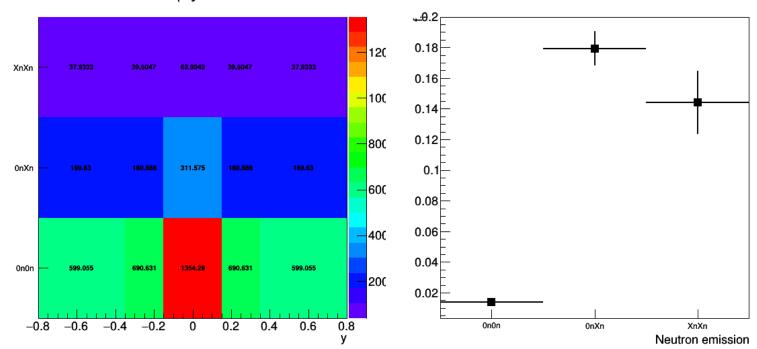

10

ZNA energy [TeV]


0n0n

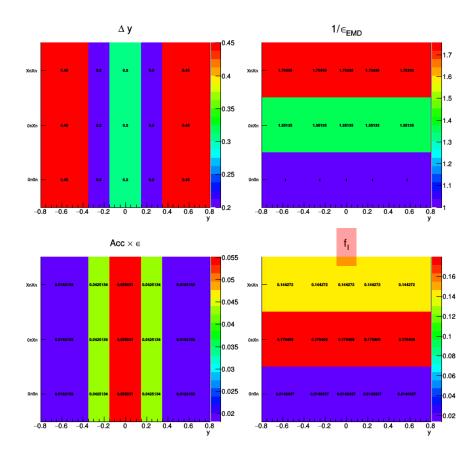

Invariant mass fits

$p_{\rm T}$ distribution of J/ ψ candidates


- Incoherent contamination was found to be constant as function of rapidity (within uncertainties)
- Only overall value per channel used in the paper
- In this analysis, f_I evaluated within |y| < 0.8 and dependent on neutron emission class

Yield and incoherent contamination

- Yield of ~1300 J/ ψ per |y| bin in 0n0n, ~300 0nXn and ~ 60 XnXn

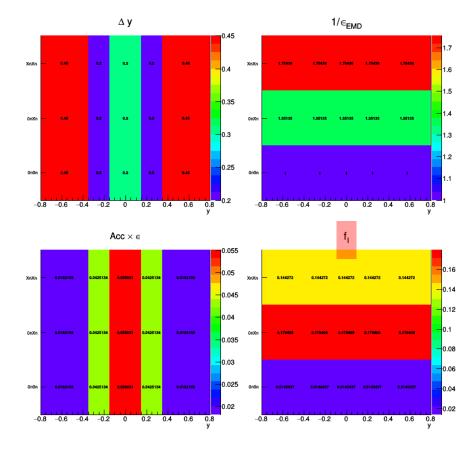


J/ψ yield

$$\frac{\mathrm{d}\sigma_{\mathrm{VM}}^{\mathrm{coh}}}{\mathrm{d}y} = \frac{N_{\mathrm{VM}}^{\mathrm{coh}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{VM}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{pileup}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{EMD}} \cdot \mathrm{BR}(\mathrm{VM} \to \mathrm{X} + \mathrm{Y}) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta \mathrm{y}}$$

$$N_{J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_{\rm I} + f_{\rm D}}$$

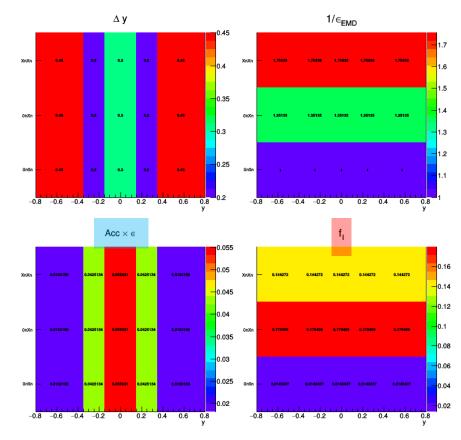
- N_{yield} is differential in |y| and ZDC(previous slide)
- f_I is differential in ZDC and constant in |y|
- f_D (feed down fraction) is constant



$$\frac{\mathrm{d}\sigma_{\mathrm{VM}}^{\mathrm{coh}}}{\mathrm{d}y} = \frac{N_{\mathrm{VM}}^{\mathrm{coh}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{VM}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{pileup}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{EMD}} \cdot \mathrm{BR}(\mathrm{VM} \to \mathrm{X} + \mathrm{Y}) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta y}$$

$$N_{J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_{\rm I} + f_{\rm D}}$$

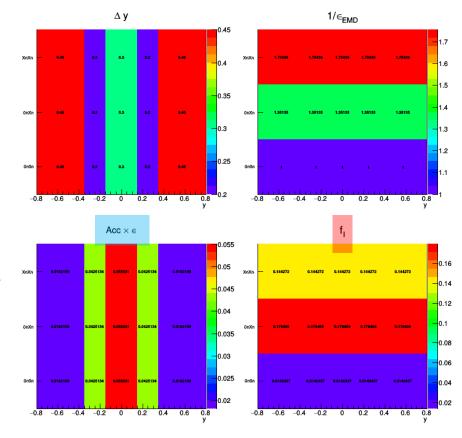
- N_{yield} is differential in |y| and ZDC(previous slide)
- f_I is differential in ZDC and constant in |y|
- **f**_D (feed down fraction) is constant


					1	
Decay	<i>y</i>	$N_{J/\psi}$	ε	f _D	$f_{\rm I}$	$\mathrm{d}\sigma^{\mathrm{coh}}_{\mathrm{J}/\psi}/\mathrm{~dy~(mb)}$
						$4.20 \pm 0.08(\text{stat.}) \pm 0.04(\text{syst.})$
e^+e^-	(0.00, 0.80)	2116 ± 65	0.025	0.043	0.050 ± 0.005	$4.12 \pm 0.13(\text{stat.}) \pm 0.10(\text{syst.})$

$$\frac{\mathrm{d}\sigma_{\mathrm{VM}}^{\mathrm{coh}}}{\mathrm{d}y} = \frac{N_{\mathrm{VM}}^{\mathrm{coh}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{VM}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{pileup}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{EMD}} \cdot \mathrm{BR}(\mathrm{VM} \to \mathrm{X} + \mathrm{Y}) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta \mathrm{y}}$$

$$N_{J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_{\rm I} + f_{\rm D}}$$

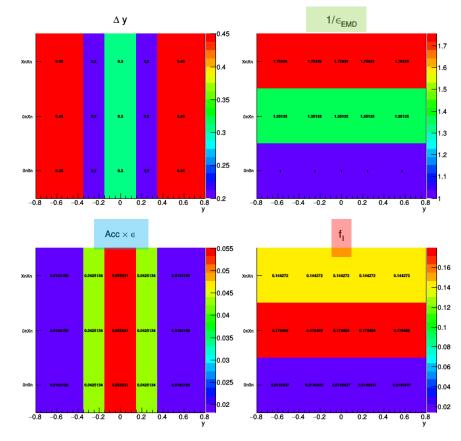
- N_{yield} is differential in |y| and ZDC(previous slide)
- f_I is differential in ZDC and constant in |y|
- f_D (feed down fraction) is constant
- $Acc^*\epsilon$ is differential in |y| and constant in ZDC



$$\frac{\mathrm{d}\sigma_{\mathrm{VM}}^{\mathrm{coh}}}{\mathrm{d}y} = \frac{N_{\mathrm{VM}}^{\mathrm{coh}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{VM}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{pileup}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{EMD}} \cdot \mathrm{BR}(\mathrm{VM} \to \mathrm{X} + \mathrm{Y}) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta \mathrm{y}}$$

$$N_{J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_{\rm I} + f_{\rm D}}$$

- N_{yield} is differential in |y| and ZDC(previous slide)
- f_I is differential in ZDC and constant in |y|
- f_D (feed down fraction) is constant
- Acc* ϵ is differential in |y| and constant in ZDC
- Pile-up veto is constant
 - Mostly QED electrons hitting VZERO/AD
 - Evaluated using CTRUE events


 $\varepsilon_{\rm veto}^{\rm pileup} = 0.92 \pm 0.002$

$$\frac{\mathrm{d}\sigma_{\mathrm{VM}}^{\mathrm{coh}}}{\mathrm{d}y} = \frac{N_{\mathrm{VM}}^{\mathrm{coh}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{VM}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{pileup}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{EMD}} \cdot \mathrm{BR}(\mathrm{VM} \to \mathrm{X} + \mathrm{Y}) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta \mathrm{y}}$$

$$N_{J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_{\rm I} + f_{\rm D}}$$

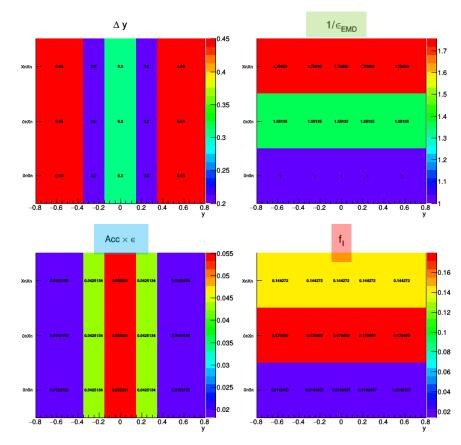
- N_{yield} is differential in |y| and ZDC(previous slide)
- f_I is differential in ZDC and constant in |y|
- f_D (feed down fraction) is constant
- Acc* ϵ is differential in |y| and constant in ZDC
- Pile-up veto is constant
- EMD veto is differential in ZDC and constant in |y|

$\frac{d\sigma_{VM}^{coh}}{dy} = \frac{N_{VM}^{coh}}{(Acc \times \varepsilon)_{VM} \cdot \varepsilon_{veto}^{pileup} \cdot BR(VM \to X + Y) \cdot \mathscr{L}_{int} \cdot \Delta y}$

16

In some cases, in addition to the neutrons, there may be some pions or other particles produced in the dissociation of the nucleus.

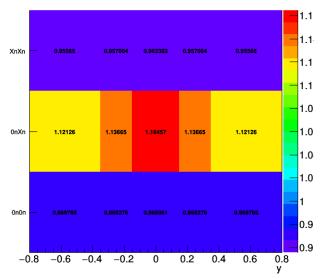
Two types of corrections are needed: to account for events lost at the trigger level due to EMD accompanied by charged particles at AD or V0 rapidities, and to account for migration across forward-neutron classes due to inefficiencies and pile-up in the neutron ZDC. The corrections were evaluated for analysis of coherent photoproduction of the ρ^0 meson, details can be found in [7].


The correction factors we use are $\varepsilon = 26\% \pm 4\%$ for 0nXn and $\varepsilon = 43\% \pm 5\%$ for XnXn class. Corrections are applied as $N_{\text{corr}} = \frac{N_{\text{raw}}}{1-\varepsilon}$

• [7] = <u>ANA1021</u>

$$\frac{\mathrm{d}\sigma_{\mathrm{VM}}^{\mathrm{coh}}}{\mathrm{d}y} = \frac{N_{\mathrm{VM}}^{\mathrm{coh}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{VM}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{pileup}} \cdot \varepsilon_{\mathrm{veto}}^{\mathrm{EMD}} \cdot \mathrm{BR}(\mathrm{VM} \to \mathrm{X} + \mathrm{Y}) \cdot \mathscr{L}_{\mathrm{int}} \cdot \Delta \mathrm{y}}$$

$$N_{J/\psi}^{\rm coh} = \frac{N_{\rm yield}}{1 + f_{\rm I} + f_{\rm D}}$$


- N_{yield} is differential in |y| and ZDC(previous slide)
- f_I is differential in ZDC and constant in |y|
- f_D (feed down fraction) is constant
- Acc* ϵ is differential in |y| and constant in ZDC
- Pile-up veto is constant
- EMD veto is differential in ZDC and constant in |y|
- Lumi and BR are constants
- Δy is the width of the rapidity bin

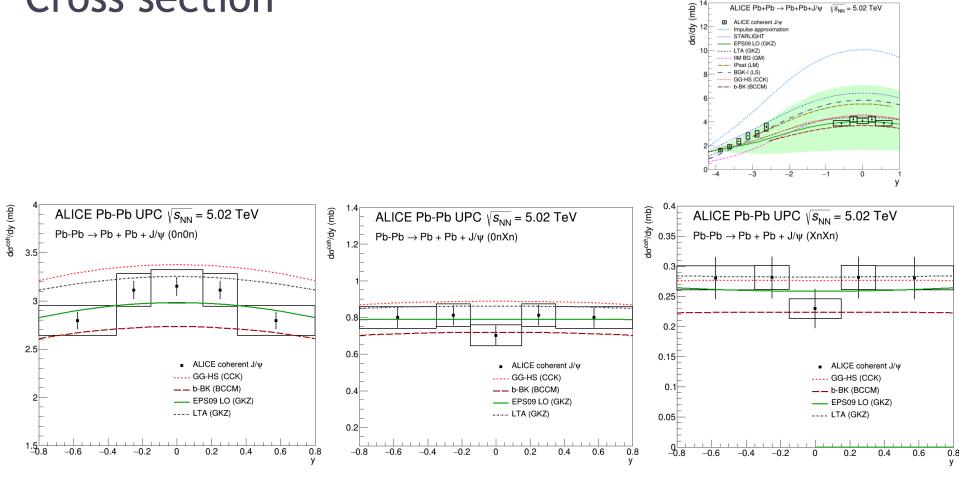
Migrations in ZDC classes

- Events can be misclassified due
 - ZN inefficiencies
 - 94% ± 1%
 - EMD pile-up in ZN
 - Estimated with CTRUE-B triggers
 - 2.37% ± 0.05% (2.38% ± 0.06%) for A(C) side of neutron ZDC
- Based on <u>ANA1021</u>

Before/After migrations

Cross section

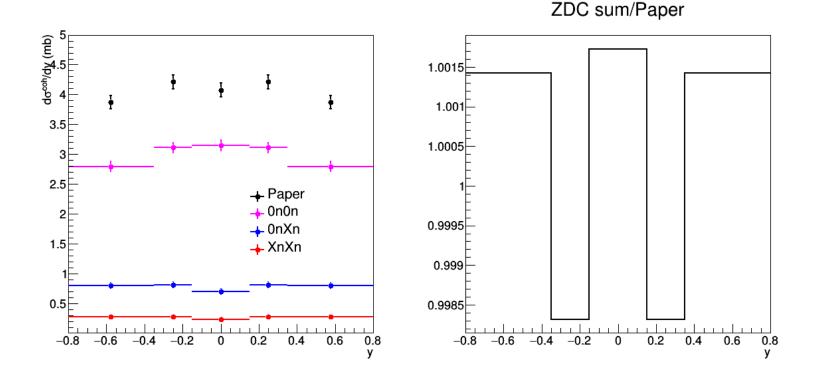
	<i>y</i>	$N_{J/\psi}$	ε	$\epsilon_{\rm EMD}$	f_{I}	$\sigma_{ m Raw}$	$\mathrm{d}\sigma^{\mathrm{coh}}_{\mathrm{J/\psi}}/\mathrm{~dy~(mb)}$
0n0n	(0.00, 0.15)	1354 ± 43	0.055	1.00	0.014 ± 0.002	3.04	$3.15 \pm 0.10(\text{stat}) \pm 0.17(\text{syst})$
0n0n	(0.15, 0.35)	1381 ± 44	0.043	1.00	0.014 ± 0.002	3.01	$3.11 \pm 0.10(\text{stat}) \pm 0.17(\text{syst})$
0n0n	(0.35, 0.80)	1198 ± 40	0.018	1.00	0.014 ± 0.002	2.71	$2.80 \pm 0.09(\text{stat}) \pm 0.15(\text{syst})$
0nXn	(0.00, 0.15)	312 ± 20	0.055	0.74	0.179 ± 0.011	0.82	$0.70 \pm 0.05(\text{stat}) \pm 0.06(\text{syst})$
0nXn	(0.15, 0.35)	362 ± 22	0.043	0.74	0.179 ± 0.011	0.92	$0.81 \pm 0.06(\text{stat}) \pm 0.06(\text{syst})$
0nXn	(0.35, 0.80)	$339\pm\!21$	0.018	0.74	0.179 ± 0.011	0.90	$0.80 \pm 0.06(\text{stat}) \pm 0.06(\text{syst})$
XnXn	(0.00, 0.15)	63 ± 9	0.055	0.57	0.144 ± 0.021	0.22	$0.23 \pm 0.03(\text{stat}) \pm 0.02(\text{syst})$
XnXn	(0.15, 0.35)	79 ± 10	0.043	0.57	0.144 ± 0.021	0.27	$0.28 \pm 0.03(\text{stat}) \pm 0.02(\text{syst})$
XnXn	(0.35, 0.80)	76 ± 10	0.018	0.57	0.144 ± 0.021	0.27	$0.28 \pm 0.04(\text{stat}) \pm 0.02(\text{syst})$


Systematic uncertanties

- Most of the uncertianties are addopted from the paper and are the same for all ZDC emmision classes
- Incoherent contamination: propagated uncertianty of the f_I from the p_T fit
- EMD correction: uncertainty of the fraction of vetoed events

	0n0n	0nXn	XnXn
Signal extraction		1.5	
Branching ratio		0.5	
Incoherent contamination	0.2	1.7	1.4
Luminosity		2.7	
TOF trigger efficiency		0.7	
SPD trigger efficiency		1.0	
Feed down		0.6	
AD and V0 veto		3.0	
ITS-TPC matching		2.8	
EMD correction	0.0	3.2	3.5
Subtotal	5.3	6.4	6.5

	y	ZDC ε	ZDC pile-up	TOTAL
0n0n	(0.00, 0.15)	± 0.2	± 1.2	± 5.5
0n0n	(0.15, 0.35)	± 0.3	± 1.2	± 5.5
0n0n	(0.35, 0.80)	± 0.3	± 1.2	± 5.5
0nXn	(0.00, 0.15)	± 0.4	+4.9 -4.7	± 8.0
0nXn	(0.15, 0.35)	± 0.3	-4.7 +4.1 -4.0	± 7.6
0nXn	(0.35, 0.80)	± 0.3	± 3.6	± 7.4
XnXn	(0.00, 0.15)	± 2.1	± 1.9	± 7.1
XnXn	(0.15, 0.35)	± 2.1	± 1.8	± 7.1
XnXn	(0.35, 0.80)	± 2.1	± 1.8	± 7.1


ALICE Pb+Pb \rightarrow Pb+Pb+J/ ψ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Cross section

Cross section

• Sum of the cross sections in various ZDC classes agrees with the integrated cross sections evaluated per channel (from paper) within 0.2%

Summary

- Coherent J/ψ photoproduction cross section evaluated differentially in |y| and neutron emission classes, $3^{\ast}3$ bins
- Forward neutrons from electromagnetic dissociation measured in neutron ZDCs, events selected using timing measurements in the calorimeter
- Ingredients for x-section evaluated as function of |y| or neutron class, as needed
- Cross section corrected for event loss due to veto by charged particles from EMD
- Analysis note: <u>ANA1188</u>

