Multisolution Approach to Classification Tasks in Biomedicine

Kateřina Henclová

FNSPE CTU

June 27, 2021

Kateřina Henclová Multisolution Feature Selection

・ロト ・回ト ・ヨト ・ヨト

Inspiration by Applications: Biomedicine

- Analyzed blood samples
- Find biomarkers of a disease
- Predict disease

イロン スピン メヨン

The Classification/Regression/Feature Selection Problem

- Few samples
- 10² 10⁴ features
- Uncertain data
- Interpretability required
- Multiple solutions possible
- Allow a domain expert to choose

	disease?	feature 1	feature 2	feature 3	feature 4	feature 5	feature 6	feature 7	feature 8	feature 9	feature 10	feature 11	feature 12
patient 1	yes	1036,9	364,9	777,7	2736,7	583,2	2052,5	4,37	1539,4	17,5	1154,6	54,0	865,9
patient 2	yes	1395,6	412,5	1046,7	3093,7	785,0	2320,3	5,89	1740,2	23,6	1305,2	64,8	978,9
patient 3	yes	1885,6	6533,4	1414,2	4900,0	1060,6	183,8	7,95	137,8	31,8	103,4	685,2	77,5
patient 4	yes	1948,3	5081,5	1461,2	3811,2	1095,9	142,9	8,22	107,2	32,9	80,4	541,0	60,3
patient 5	no	678,7	10945,3	509,0	820,9	381,8	615,7	2,86	461,8	11,5	346,3	1106,0	259,7
patient 6	yes	4320,9	14755,7	3240,7	3688,9	2430,5	2766,7	9,23	2075,0	36,9	1556,3	1512,5	1167,2
patient 7	yes	1805,7	3493,6	1354,3	2620,2	1015,7	1965,2	7,62	1473,9	30,5	1105,4	379,8	829,1
patient 8	no	178,5	5588,4	133,9	419,1	100,4	314,3	0,75	235,8	3,0	176,8	561,9	132,6
patient 9	no	400,2	3186,6	300,2	298,7	225,1	224,1	1,69	168,0	6,8	126,0	325,4	94,5
patient 10	no	590,5	1951,2	442,8	1363,4	332,1	1022,6	2,49	766,9	10,0	575,2	205,1	431,4

ヨー わくゆ

・ 同 ト ・ ヨ ト ・ ヨ ト

$$y = X\beta$$
 (+ noise)

Analytical view: find β s that are both sparse and accurate:

 $||X\beta - y||_{l_2} \le \varepsilon$ and $||\beta||_{l_0} \le \delta$.

Probabilistic view: what β s are most likely given data X, y? Assume: noise $\sim \mathcal{N}(0, \sigma_e^2 I) \implies$ Maximum likelihood estimate:

 $\beta_{MLE} = \operatorname{argmax}_{\beta} \log p(y|\beta) = \operatorname{argmin}_{\beta} ||X\beta - y||_{2}^{2}.$

Each valid solution β corresponds to a peak in likelihood.

- Bayes: admit uncertainty
- Approximation
- O New optimization problem
- Stochastic gradient descent

▲圖▶ ▲屋▶ ▲屋▶

E

$\textit{posterior distribution} = \frac{\textit{evidence from data} \times \textit{prior distribution}}{\textit{normalization constant}}$

Posterior Approximation by Gaussian Mixtures

- True posterior: too difficult to compute
- Approximation: multimodal, easier to compute (use mixture of Gaussians ⇒ find its parameters)
- Goodness of fit measure: Kullback-Leibler divergence (trick: Evidence Lower Bound ⇒ solve a different problem)

The Problem to Be Computed

Definition (The Parametrized Maximization Problem)

$$\operatorname{argmax}_{orall \mu^{(k)}, \ orall \Sigma^{(k)}, \ orall lpha_k} \iint q(\mathcal{Z}) \log \left(rac{p(\mathcal{X}|\mathcal{Z}) \ p(\mathcal{Z})}{q(\mathcal{Z})}
ight) \ d\mu \ d\sigma,$$

where:

X = {X, y} ... all known stuff,
 Z = {μ^(k), Σ^(k), α_k, ...} ... all unknown stuff,
 p(Z) ... appropriate sparse prior,
 p(X|Z) ... data likelihood (y ~ N (Xμ^(k), σ_e²I)),
 q(Z) = Σ_{k=1}^m α_kN(μ^(k), Σ^(k)) ... posterior's approximation.

Solving the Optimization Problem

Use Stochastic Gradient Descent:

- Implicit reparametrization of mixture gradients
- Modified ADAM optimizer
- Automatic differentiation

Overview

- Problem: feature selection within classification/regression
- Idea: provide all solutions of required quality & sparsity
- Approach:
 - Bayes theorem (sparse prior)
 - Posterior approximation (multimodal Gaussian mixture)
 - Solution New Optimization problem (use ELBO)
 - Stochastic Gradient Descent (hardcore & tailored)

Kateřina Henclová Multisolution Feature Selection

Thank you for your attention.

Kateřina Henclová Multisolution Feature Selection

・ロト ・回 ト ・ヨト ・ヨト

Э

Da C