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Simulations in HEP

@ Simulations of elementary particle interactions - essential tool,
representation of theory

@ Usage - algorithm training (regression, classification), tuning of data
processing steps

@ Detector simulations

e Simulations of detector response
(electric signal)

e Followed by reconstruction steps -
calculation of different quantities
(energy, momentum, ...)

@ Standard approach - Monte Carlo-based
algorithms

@ Agreement between simulations and real data ?
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Homogeneity testing of reconstructed quantites

@ Two datasets (eg. MC simulations and real measurements)
e Do they come from the same distribution?

@ Unknown parametric family — two-sample nonparametric test of
homogeneity

@ MC simulations - often weighted samples (sample x; — weight w;)

@ Problem: Standard homogeneity tests are not built to handle weighted
samples.

@ In general: Two i.i.d. weighted datasets:

o Observations Xi,..., X, ~ F with weights Wy, ..., W, ~ Fy
o Observations Y1,..., Ym ~ G with weights V,...,V,, ~ Gy
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Homogeneity testing - example

Kolmogorov-Smirnov test
@ Kolmogorov distance: K(F, G) = sup,p |F(x) — G(x)|
@ Empirical distribution function (EDF): F,(x) = %Z};l I~ (X))
@ Test statistics: Ky m = sup,cp |Fn(X) — Gm(x)]

Ho rejected < /22Ky m > hi_q

n+m

where H(A) =1 —23/2%(~1)k"1e=2N \ >0
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Homogeneity testing of weighted datasets

Possible approaches:
© Modify test statistic to account for weighted data
e Empirical distribution function — weighted EDF
FV(x) = % S0 Wilcoo (X)), Vx€R
e n number of observations — effective sample size
n 2
(ijl Wf) ~ n(E w)?

Ne = Zn W2 W2
=1 . o s
e Asymptotic distribution of modified test statistic - unknown
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Homogeneity testing of weighted datasets

Possible approaches:
@ Estimate distrib. on weighted data and generate unweighted dataset
o Weighted kernel density estimates (KDE)
7(t) = hZ S~ S IWK(t X), VteR
o K:Rg — ]R+ kernel function

Draw samples from KDE: vor

02t kernel K
@ Randomly select X
@ Generate e ~ K ol

@ Unweighted obs. 005}
Xi+ he o
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Homogeneity testing of weighted datasets

Possible approaches:
© Re-arranging

e Transformation of weighted data to unweighted
o Based on weighted averages
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Homogeneity testing - numerical simulations

@ Verify functioning of modifications - numerical simulations

Hy: both datasets drawn from the same distribution
Get KDE — generate unweighted

Get AKDE (adaptive KDE) — generate unweighted
Re-arranging (data transformation)

KS statistic modification to weighted data

@ Portion (%) of Hy rejections (estimate of type | error)
e Good functioning - % of Hy rejections ~ signif. level a.

@ Distribution of p-values, power of test
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Functioning of weighted homogeneity testing

@ Two weighted datasets, weighted dataset vs. unweighted
@ No. of observations s € {500, 1000, 1500, .. .,3500}

® Verification for selected families of distributions (observations, weights)
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Figure: Distribution of X
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Functioning of weighted homogeneity testing

@ Two weighted datasets, weighted dataset vs. unweighted
@ No. of observations s € {500, 1000, 1500, . ..,3500}

@ Verification for selected families of distributions (observations, weights)
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Figure: Distribution of W
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Results of simulations

Estimate of type I. error, observations N(0, 1), weights Beta(2,4), o = 0.05
@ Similar results for other distributions
@ KDE-based test - type | error > o

@ Re-arranging - type | error < «
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Results of simulations

Estimate of type I. error, observations N(0, 1), weights Beta(2,4), a = 0.05
@ Similar results for other distributions
@ KDE-based test - type | error > «

@ Re-arranging - type | error < a — low power of test
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KDE-based tests

Why does KDE-based approach not work properly?
@ Problem in tail estimation - false
@ Problem in parameter h - false

@ Problem in data generation - false
e Comparison with different method

@ Assume knowledge of parametric family — estimate parameters — generate
unweighted data
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KDE-based tests

Why does KDE-based approach not work properly?
@ Problem in tails estimation - false
@ Problem in parameter h - false

@ Problem in data generation - false
e Comparison with different method

@ Assume knowledge of parametric family — estimate parameters — generate
unweighted data
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KDE-based tests

Why does KDE-based approach not work properly?
@ Problem in tails estimation - false
@ Problem in parameter h - false

@ Problem in data generation - false
e Comparison with different method

@ Assume knowledge of parametric family — estimate parameters — generate
unweighted data
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Summary

@ Test with modified statistics
o Type | error around signif. level

@ Test with re-arranging
o Type | error below o — low power of a test

@ Test with KDE/AKDE
e Accumulation of inaccuracies — large type | error
e Similar results for different distributions — determine critical values for
Hp rejection from numerical simulations
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Thank you.
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