Basic principles 00000	Pulse Propagation	Conclusion 000	References

Laser driven plasma waveguides for tabletop synchrotrons

Martin Guldan

České Vysoké Učení Technické v Praze Fakulta Jaderná a Fyzikálně Inženýrská

WJCF June 14, 2022

1/16

CVUT FJFI

イロト イポト イヨト イヨ

Basic principles	Pulse Propagation	Conclusion	References

Table of contents

CVUT FJFI

Introduction	Basic principles	Pulse Propagation	Conclusion	References
•				

Size

LHC - 27 km \implies 14 TeV, FCC - 100 km \implies 100 TeV, SLAC - 3 km \implies 42 GeV electrons.

RF breakdown

3/16

CVUT FJFI

Cavity damage at \sim 100 MV/m

CERN

Introduction •	Basic principles 00000	Pulse Propagation	Conclusion 000	References

RF breakdown

 $\sim 100 \; MV/m$

3/16

CVUT FIFI

Cavity damage at

Why new technology?

Size

LHC - 27 km \implies 14 TeV, FCC - 100 km \implies 100 TeV, SLAC - 3 km \implies 42 GeV electrons.

Energy doubling

With 85 cm plasma channel - 42 GeV \rightarrow 85 GeV.

Introduction	Basic principles	Pulse Propagation	Conclusion	References
•				

Energy doubling

With 85 cm plasma channel - 42 GeV \rightarrow 85 GeV.

Ian Blumenfeld et al, Nature (2007).

3/16

CVUT FJFI

Martin Guldan

Introduction •	Basic principles 00000	Pulse Propagation	Conclusion 000	References

Size

LHC - 27 km \implies 14 TeV, FCC - 100 km \implies 100 TeV, SLAC - 3 km \implies 42 GeV electrons.

RF breakdown

Cavity damage at \sim 100 MV/m

Energy doubling

With 85 cm plasma channel - 42 GeV \rightarrow 85 GeV.

Standalone acceleration

LWFA - 0 \rightarrow 7.8 GeV in 20 cm channel.

<□> <□> <□> <□> <=> <=> <=> <=> <=> <=> <=> 3/16

CVUT FIFI

Laser wakefield acceleration

Martin Guldan

Introduction	Basic principles	Pulse Propagation	Conclusion	References
•				

Standalone acceleration

LWFA - 0 \rightarrow 7.8 GeV in 20 cm channel.

AJ Gonsalves et al, Physical review letters (2019).

(ロ) (四) (注) (注) (注)

3/16

CVUT FJFI

Basic principles ●0000	Pulse Propagation	Conclusion 000	References

Laser parameters

Requirements

High intensity ultrashort laser pulse focused into small area over a large distance.

- Intensity: $I_0 > 10^{17} \text{ W/cm}^2$
- Length: $\tau < 50$ fs
- Focus: $r_0 < 100 \ \mu m$
- Distance: d > 10 cm

Normalized vector potential $a_0 = \frac{eA_0}{m_e c}$ $a_0 = 0.86\lambda [\mu m] \sqrt{I_0 [10^{18} W/cm^2]}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

4/16

CVUT FIFI

Martin Guldan

Basic principles	Pulse Propagation	Conclusion	References
00000			

Laser parameters

Gaussian beam

$$I(r,z) = I_0\left(\frac{w_0}{w(z)}\right)^2 exp\left(\frac{-2r^2}{w(z)^2}\right)$$

5/16

CVUT FJFI

Martin Guldan

Basic principles 00●00	Pulse Propagation	Conclusion 000	References

Photo - Sean C. Fulton, Graphic - Berkeley lab

◆□→ ◆□→ ◆注→ ◆注→ □注

6/16

CVUT FJFI

Basic principles 000●0	Pulse Propagation 000	Conclusion 000	References

- For a₀ ≪ 1: Weak plasma oscillations
- For $a_0 > 2$: Bubble regime

Ponderomotive force

Expels electrons from high intensity region, $F = -m_e c^2 \nabla (1 + \frac{a_0^2}{2})^{\frac{1}{2}}$

Ju, Jinchuan. PhD Thesis (2013).

7/16

CVUT FJFI

Martin Guldan

Basic principles 000●0	Pulse Propagation 000	Conclusion 000	References

- For a₀ ≪ 1: Weak plasma oscillations
- For $a_0 > 2$: Bubble regime

Ponderomotive force

Expels electrons from high intensity region, $F = -m_e c^2 \nabla (1 + \frac{a_0^2}{2})^{\frac{1}{2}}$

Ju, Jinchuan. PhD Thesis (2013).

・ロン ・回 と ・ ヨン ・ ヨン

7/16

CVUT FJFI

Martin Guldan

Basic principles	Pulse Propagation	Conclusion	References
00000			

- For a₀ ≪ 1: Weak plasma oscillations
- For $a_0 > 2$: Bubble regime

Ponderomotive force

Expels electrons from high intensity region, $F = -m_e c^2 \nabla (1 + \frac{a_0^2}{2})^{\frac{1}{2}}$

Ju, Jinchuan. PhD Thesis (2013).

Bubble regime

Spherical cavity void of free electrons.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ≧ ∽९ペ 7/16

CVUT FIFI

Martin Guldan

Basic principles 0000●	Pulse Propagation	Conclusion 000	References

Bubble regime

E. Esarey, C.B. Schroeder, W.B. Leemans, Reviews of modern physics (2009).

8/16

CVUT FJFI

Martin Guldan

	Basic principles 00000	Pulse Propagation ●○○	Conclusion 000	References
Dispersion				

 $\bullet\,$ Ti:Sapphire laser - 800 \pm 300 nm \rightarrow temporal stretching.

9/16

CVUT FJFI

Chirping

Wavelength decomposition and rearrangement.

Martin Guldan

	Basic principles 00000	Pulse Propagation 0●0	Conclusion 000	References
Diffraction				

- Over $2Z_R$ is intensity constant, afterwards intensity drops.
- Bigger $Z_R \rightarrow$ better wave stability, lower peak intensity $(Z_R \propto w_0^2)$.

Plasma channelling

 $\label{eq:parabolic profile} \begin{array}{l} \mbox{Parabolic profile} \rightarrow \mbox{direct change} \\ \mbox{of index of refraction.} \end{array}$

Capillary guiding

Fresnel refraction of capillary walls.

transactions on plasma science (2008).

10/16

CVUT FIFI

Martin Guldan

	Basic principles 00000	Pulse Propagation 00●	Conclusion 000	References
~ .				

Curved channel

• Channelling works for bending the laser pulse.

Min Chen et al, Light: Science & Applications (2016).

x = 7.667 mm

э

11/16

CVUT FJFI

Basic principles 00000	Pulse Propagation 000	Conclusion ●00	References

The grand plan

12/16

CVUT FJFI

Martin Guldan

Basic principles 00000	Pulse Propagation	Conclusion ○●○	References

Summary

Basic principles 00000	Pulse Propagation	Conclusion ○○●	References

Thank you for your attention!

14/16

CVUT FJFI

Basic principles 00000	Pulse Propagation	Conclusion 000	References

References I

- Ian Blumenfeld et al. "Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator". In: *Nature* 445.7129 (2007), pp. 741–744.
- [2] Min Chen et al. "Tunable synchrotron-like radiation from centimeter scale plasma channels". In: *Light: Science & Applications* 5.1 (2016), e16015–e16015.
- [3] Eric Esarey, CB Schroeder, and WP Leemans. "Physics of laser-driven plasma-based electron accelerators". In: *Reviews of modern physics* 81.3 (2009), p. 1229.
- [4] AJ Gonsalves et al. "Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide". In: *Physical review letters* 122.8 (2019), p. 084801.

CVUT FIFI

Basic principles 00000	Pulse Propagation	Conclusion 000	References

References II

- [5] Jinchuan Ju. "Electron acceleration and betatron radiation driven by laser wakefield inside dielectric capillary tubes". PhD thesis. Université Paris Sud-Paris XI, 2013.
- [6] Berkeley lab. Simulating tomorrow's accelerators at nearly the speed of light. 2022. URL: https: //newscenter.lbl.gov/2011/03/17/simulating-at-lightspeed/ (visited on 06/08/2022).
- [7] Albert Reitsma and Dino Jaroszynski. "Propagation of a short intense laser pulse in a curved plasma channel". In: *IEEE transactions on plasma science* 36.4 (2008), pp. 1738–1745.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

16/16

CVUT FIFI

[8] Walter Wuensch. *High-gradient breakdown in normal-conducting RF cavities.* Tech. rep. 2002.