Charm production at CBM experiment

Týna Haismanová

Supervisor: RNDr. Petr Chaloupka, Ph.D.

Workshop EJCF 2022, Bílý Potok FNSPE CTU

11-18 June, 2022

Outline

- 1 Phase diagram
- 2 Phase transitions
- 3 Heavy-ion collisions
- 4 Charm quark
- 5 Charm production at high collision energies
- 6 Charm production at low collision energies
- 7 Sub-threshold charm production
- 8 CMB experiment at FAIR
- 9 Micro Vertex Detector

Motivation

Electromagnetic interaction is well described by QED.

A water phase diagram. [1]

What about strong interaction?

K. Haismanová (WEJCF 2022)

Charm production at CBM experiment

QCD phase diagram

QCD is yet to be explored more properly.

Phase diagram of nuclear matter. [2].

- temperature T increases with higher energy of the collision
- conjugate variable to the net-baryon density is baryo-chemical potentional µ_B
- µ_B is an expression of the imbalance between matter and antimatter

At which temperature critical point for nuclear matter can be found?'

K. Haismanová (WEJCF 2022)

Charm production at CBM experiment

Critical point

Predictions of the exact position of the CP vary depending on the calculations.

Nuclear matter phase diagram. [3].

Phase diagram combining phenomenological freeze-out data and theoretical results. [**4**].

Heavy-ion collisions

Hydrodynamic space-time evolution after the collision when QGP is (not) present. [5].

- experiments can simulate some of extreme conditions
- left scenario: the energy is not high enough for QGP to occur, this form of matter is very dense
- right scenario: QGP is created

Charm quark

■ discovered in 1974
■ rest mass: (1.275 ± 0.020) GeV
■ electric charge: +²/₃e
■ isospin I = 0 and J^P = ¹/₂⁺

Size comparison of 6 quarks and a proton (grey). **[6**].

Charm production at CBM experiment

Charm reconstruction

	composition	rest mass [MeV/ c^2]
D^0	$c\overline{u}$	1864.84 ± 0.05
D^{*0}	$c\overline{u}$	2006.85 ± 0.05
D^+	$c\overline{d}$	1869.66 ± 0.05
D^{*+}	$c\overline{d}$	2010.26 ± 0.05
D_s^+	$c\overline{s}$	1968.35 ± 0.07
Λ^+	udc	2286.46 ± 0.14
J/Ψ	cc	3096.900 ± 0.006

Relative abundance of charm quark fragmenting to hadrons averaged over data collected in pp, e^+e^- and pe^\pm collisions. [7]

- 16.5 % of D_{+}^{*+} from $D^{0}\pi^{+}$ reconstruction
- **•** 7.9 % of D^{*^+} from $D^+\pi^0$ or $D^+\gamma$ reconstruction

K. Haismanová (WEJCF 2022)

Open charm as a probe to QGP

- ultra-relativistic energies at RHIC or LHC
- in traditional scenario charm is only produced during the collision in hard processes
- it carries information about the very early stage of nuclear collision (too heavy to be affected)
- initial state is well defined, it is possible apply QCD perturbative calculations
- mechanism of energy loss, transport coefficients
- energy loss increases with temperature
- medium effects can modify the yield of high p_T particles \rightarrow modification factor R_{AA}

$$\label{eq:RAA} \blacksquare \begin{array}{c} \frac{1}{N_{AA}} = \frac{1}{N_{coll}^{AA}} \frac{\frac{\mathrm{d}^2 N^{AA}}{\mathrm{d} p_T \mathrm{d} \eta}}{\frac{\mathrm{d}^2 N^{PP}}{\mathrm{d} p_T \mathrm{d} \eta}} \\ \text{for } R_{AA} = 1 \text{ no medium effects pres} \end{array}$$

Strong suppression of D^0 a) in model calculations and b) in data from ALICE and STAR. [16]

Charm production at CBM experiment

ent

Open charm as a probe to QGP 2

• v_2 is similar to that of lighter quarks

STAR data: charm flow is very similar to that of lighter quarks. [16]

K. Haismanová (WEJCF 2022)

Charm production at CBM experiment

11-18 June, 2022

10 / 19

Heavy ion collisions at lower collision energies

motivation: exploration of other parts of phase diagram

 system created at low energies is close to the transition between hadronic phase and QGP with very high baryo-chemical potential and net baryon density and lower temperatures

Worldwide high-density experiments and their rate handling abilities. [10]

K. Haismanová (WEJCF 2022)

Charm production at CBM experiment

11-18 June, 2022 11 / 19

FAIR, The Accelerator Facility

The map of FAIR accelerating facility blue is finished, red is under construction. [11]

Storage rings

- to capture produced rare particles
- new experiments with these particles every time they fly past
- repeated use of those particles is indirectly equivalent to a further increase in intensity without having to use the accelerator facility

SIS-100 - chwerlonen Synchrotron (heavy ion synchrotron)

- circumference 1.1 km
- acceleration of both very light ions (like H) and heavy ones (Pb, Au...) possible
- charm: propagation in nuclear matter, production mechanisms at threshold beam energies

 \rightarrow observables: D-mesons and charmonium in p-p and p-A collisions

Charm production at CBM experiment

12 / 19

FAIR (Facility for Antiproton and Ion Research)

- end of construction planned for 2027
- 4 planned experiments
 - NUSTAR NUclear STructure Astrophysics and Reactions (stars and nuclei)
 - PANDA antimatter research, antiproton annihilation
 - APPA Atomic Plasma Physics and Application macroscopic effects for tissues and materials (medical use and engineering)
 - CBM Compressed Baryonic matter (it can simulate conditions inside supermassive objects like neutron stars)

Charm production at FAIR

- multi-step scatterings of nucleons and their resonance states accumulates sufficient energy for production of J/Ψ and $\Lambda_c + \overline{D}$
- SIS100 acceleration energy below the charm production threshold in elementary collisions

Production yields of J/Ψ , Λ_c , D and \overline{D} in p-p and Au-Au central reactions as a function of collision energy. Vertical dashed lines indicate threshold center-of-mass energies and grey area corresponds to the beam energy range expected at SIS100. [12]

CBM experiment at FAIR

- MVD (Micro Vertex Detector) primary and secondary vertex reconstruction with very high precision
- STS (Silicon Tracking system) vertex, track and momentum reconstruction
- RICH (Ring Imaging Cherenkov detector) electron identification
- MuCh (Muon Chamber system) muon identification
- TRD (Transition Radiation Detector) global tracking, electron identification
- TOF (Time-Of-Flight) time-of-flight measurements and hadron identification
- ECAL (Electromagnetic CALorimeter) electron and neutral particles identification
- PSD (Projectile Spectator Detector) centrality determination and reaction plane

Micro Vertex Detector

MVD and STS detectors with tracks from p-Ni collision at 15 AGeV. [13]

Basic principle of MVD. [14]

Thank you for your attention.

K. Haismanová (WEJCF 2022)

Charm production at CBM experiment

11-18 June, 2022

17 / 19

Phase Diagram for Water Study Guide | Inspirit. [online]. Available at: https://www.inspiritvr.com/chemistry/states-of-matter/phase-diagram-for-water-study-guide

Looking for the phase transition - recent NA61/SHINE results - CERN Document Server. CERN Document Server [online]. Available at: http://cds.cern.ch/record/2301677/plots

Relativistic heavy-ion collisions - CERN Document Server. CERN Document Server [online]. Available at: https://cds.cern.ch/record/1695331/plots

Fei Gao and Jan M. Pawlowski, QCD phase structure from functional methods, 2020. Available at: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.102.034027

 $\begin{array}{l} \mbox{Evolution of collisions and QGP | Particles and friends | Something you really do not need to know about. But why not? \\ [online]. Available at: https://particlesandfriends.wordpress.com/2016/10/14/evolution-of-collisions-and-qgp/ \\ \end{array}$

Charm quark (c). [online]. Available at: https://www.chegg.com/learn/physics/introduction-to-physics/charmed-quark-c

Georgijs Skorodumovs, Monte Carlo Simulation of charmed meson reconstruction in the semi-leptonic decay channel D*+ \rightarrow D0 (K -e + e) + at ALICE, 2016. Available at: https://www.physi.uni-heidelberg.de/Publications/Georgijs-bachelor.pdf

Baoyi Chen, Charmonium Production with QGP and Hadron Gas Effects at SPS and FAIR, 2018. Available at: https://www.researchgate.net/figure/Charmonium-nuclear-modification-factor-RAA-as-a-function-of-the-number-of-participantsin_fig4_301719198

S. Plumari, G. Coci, S.K. Das, V. Minissale, V. Greco, Transport properties from Charm to Bottom: pT suppression, anisotropic flow on and their correlations to the bulk dynamics, 2018. Available at: https://reader.elsevier.com/reader/sd/pii/S0375947418303518?token=823BF2DE68518497 1EA4FCE2DAE92DBA947DF1349CE172254DD3D9579FE4980DC1E70E051D2113B29F6E 4F65F5C60A42originRegion=eu-west-1originCreation=20220611142318

Subhasis Chattopadhyay, Physics of strongly interacting matter at high net-baryon density, 2021.

GSI - The Accelerator Facility. [online]. Available at: https://www.gsi.de/en/researchaccelerators/fair/the_machine

J. Steinheimer, A. Botvina, M. Bleicher, Sub-threshold charm production in nuclear collisions, 2017. Available at: https://arxiv.org/pdf/1605.03439.pdf

Anna senger, Charm Production at FAIR. Available at: https://indico.gsi.de/event/4597/contributions/21571/attachments/15716/19864/ Charm_ASenger.pdf

Philip Klaus, The Micro Vertex Detector at the CBM Experiment. Available at: https://indico.cern.ch/event/353906/contributions/2261680/attachments/1329806/1999578/ CBM-MVD_CONF12_PK_v1.9_rs.pdf

Particle Listings. Particle Data Group [online]. Available at:https://pdg.lbl.gov/2022/listings/contents_listings.html

Zebo Tang, Wangmei Zha, Yifei Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC, 2021.

K. Haismanová (WEJCF 2022) Charm production at CBM experiment 11-18 June, 2022 19 / 19