B physics at ATLAS

Lukáš Novotný

16th June 2022

B physics at ATLAS

Seen previously

Muon opposite side tagging	in $B_s o J/\psi + \phi$
Lukas Novotn	y
FNSPE CTU	
19. 01. 2018	
J. B. G.	ATLAS EXPERIMENT

CP Violation in $B_s^0 \rightarrow J/\psi \phi$ - Theoretical Background

Lukáš Novotný

Lukáš Novotný

16th June 2022

Content

1 B Physics Facilities

2 LHC

- 3 The ATLAS Collaboration
 - Detector
 - ATLAS Trigger System
 - ATLAS B-Physics Triggers
- 4 B-physics at ATLAS
 - CP Violation in $B^0_s \to J/\psi \phi$
 - B_d^0 lifetime
 - $\blacksquare B^{\bar{0}}_{(s)} \to \mu \mu$

B Physics Facilities

- B physics has been and is hot topic
- Helps understanding of elementary particles and their interactions
- Good channel for New Physics discoveries
- Important results in history
 - 1977: $\Upsilon(1S)$ at Fermilab (*b*-quark evidence)
 - 1983: B meson reconstructed at CLEO (B_d)
 - 1986: *B_d* mixing observed at ARGUS
 - 1900-2007 boom of B-physics results (next slide)
 - 2007-now: Precision measurements by LHC experiments ($B^0
 ightarrow \mu \mu$ discovery)
 - 2019-now: Belle-II results

B Physics Facilities

Lukáš Novotný

B-physics at LHC

Lukáš Novotný

B physics at ATLAS

16th June 2022

The CERN accelerator complex Complexe des accélérateurs du CERN

- 27 km ring, proton-proton collider, energies: √s =7, 8, 13, 13.8 TeV
- Collision rate: 40MHz
- 8 interaction points (IP)
- 4 large experiments (ALICE, ATLAS, CMS, LHCb)
- CMS and ATLAS: general purpose detectors
- LHCb: dedicated for B physics
- Totally: 29 fb⁻¹ in Run1 and 185 fb⁻¹ in Run2 of high energy pp collisions

LHC fill pattern

- Injection: Magnet current increased, bunches injected from SPS
- Ramp: Beams accelerated to collision energy
- Squeeze and adjust: Beam size at the IP is reduced (squeeze) and prepared for the collision (adjust)
- Stable beams: Colliding the beams at the IPs, small adjustments, 50% of the time LHC at stable beams
- Dump and ramp down: Beams extracted from the LHC and safely dumped. Magnetic fields are ramp down

The ATLAS Collaboration

Lukáš Novotný

B physics at ATLAS

16th June 2022

The ATLAS Experiment

The ATLAS Detector

B physics at ATLAS

ATLAS TDAQ system

- Online processing, selecting and storing events of interest for offline analysis
- Two stage trigger system: L1 and HLT
- 40 MHz (bunch crossing) ightarrow 100 kHz (L1) ightarrow 1.2 kHz (HLT, 1.2 GB/s)

L1 Trigger

- Hardware-based system
- custom electronics to trigger on reduced-granularity information from the calorimeter (L1Calo) and muon detectors (L1Muon)

L1Calo

- Cluster Processor (CP): identifies electron, photon, and τ -lepton
- Jet/Energy-sum Processor (JEP): identifies jet candidates and produces global sums of total and missing transverse energy

L1Muon

- uses hits from the RPCs (in the barrel) and TGCs (in the endcaps)
- determines the deviation of the hit pattern from that of a muon with infinite momentum

L1 Trigger

Central Trigger Processor (CTP)

- L1 trigger decision formed here
- Take as an input: L1Calo trigger, L1Muon trigger and L1Topo (FPGA, algorithms looking for physics e.g. $B^0 \to e^{\pm} \mu^{\pm}$
- Trigger signals from several detector subsystems (LUCID, ZDC)
- Applies the dead time limit of the L1 acceptance rate
- When event accepted by L1, Front-End (FE) detector electronics read out the event data from each detector
 - ReadOut Drivers (RODs): initial processing and formatting
 - ReadOut System (ROS): buffer the data

High-Level Trigger (HLT)

- Software-based
- largely based on the offline software Athena (itself is based on Gaudi, a framework for data processing for HEP experiments)
- Uses Rol from L1 as an input
- HLT determines the Rol on a hypothesis algorithm (identification algorithms and pile-up rejection methods)
 - Not only one algorithm used \rightarrow triggers (trigger menu)

 \mid Data recorded at an average rate ${\sim}1.2$ kHz

- 200 Hz for B-physics and Light State (BLS)
- 1 kHz for all other main physics data

ATLAS B-physics Triggers

- At LHC, only 1% contains $b\bar{b}$ events
- Only 5% of triggers suitable for BLS need to be highly selective
- Only BLS data kept separate for the offline reconstruction
- BLS trigger based on di-muon triggerat the L1 stage
 - 4 GeV + 4 GeV
 - 4 GeV + 6 GeV
 - 6 GeV + 6 GeV
- Single muon triggers (15 GeV at L1, 20 GeV at HLT)
- Without further requirements, too large rate would be obtained = large prescale factors (trigger rate is much larger than L1 or HLT trigger)
 - L1Topo used to reduce the di-muon trigger rates while retaining sensitivity

Trigger	Unprescaled rate	Target rate	Total prescale	L1 prescale	HLT prescale
HLT_mu15_L1MU10	100 Hz	20 Hz	5	5	1
HLT_mu10_L1MU10	200 Hz	20 Hz	10	5	2

ATLAS B-physics Triggers

For example, L1Topo critical for $B_s \rightarrow \mu\mu$

ATLAS B-physics Triggers

Dimuon chains

 $J/\psi / Y / B \rightarrow \mu\mu$ decay topologies: two oppositely charged muons are fitted to the common vertex production of quarkonium states, spectroscopy, b-production

- measurements in decays like B_(c) →μμ
- decays $B \rightarrow J/\psi(\rightarrow \mu\mu) + X$

Dimuon + tracks

 $B \rightarrow \mu\mu X$ decay topologies: combine the Inner Detector tracks with the dimuon system $B \rightarrow J/\psi K$ (dimuon + one track) $\cdot B_{a} \rightarrow J/\psi \phi$ (dimuon + two tracks)

Dielectron + tracks

B→µµ

B→µµX

 $B \rightarrow eeX$ decay topologies: used for $R(K^*)$ measurement in $B \rightarrow K^* ee/\mu\mu$

Multi-muon

Three (or four) muon candidates are found in the event and two of them can be fitted to the common vertex, used for the exotic states searches

Tau-lepton LFV decay

Search for the LF violating $\tau \rightarrow 3\mu$: require one high- p_{τ} muon at L1 level and looking for the low- p_{τ} muons at the High-Level Trigger (HLT)

Auxillary chains

Collect a large sample of the low-p_t muons for offline muon calibration via tag-and-probe method

X→3µ

X→4µ

τ→2μ

τ→3μ

B→eeX

Auxillary

triggers

Structure of BLS analyses:

Onia production and b cross section

- Search for 4μ resonances at low masses
- Extract gluon Transverse Momentum Dependent Parton Distribution functions (TMDs) in the proton using $J/\psi + \gamma$
- Cross-section Measurement of Associated $J/\psi + W^+$ Production
- Looking for the decay $W^+
 ightarrow J/\psi + D_s^+$

Rare decays

- Angular analysis of $B_d o K^*(892) \mu^+ \mu^-$
- Search for $B_{(s)}
 ightarrow \mu \mu$
- Search for $\tau \to 3\mu$
- R(K*) measurement

Physics with $B \rightarrow J/\psi$

- B^+ cross-section measurement
- Searches for pentaquarks
- CP violation in $B^0_s
 ightarrow J/\psi \phi$
- B_d^0 and B^+ lifetime measurement
- Search for $Z_c(4200)$ in $B^0 \beta J/\psi K \pi$ decays
- Study of $B_c^+ \rightarrow D_s^{(*)+}$
- B_c/B^+ production ratio measurement

Structure of BLS analyses:

Onia production and b cross section

- Search for 4μ resonances at low masses
- Extract gluon Transverse Momentum Dependent Parton Distribution functions (TMDs) in the proton using $J/\psi + \gamma$
- Cross-section Measurement of Associated $J/\psi + W^+$ Production
- Looking for the decay $W^+
 ightarrow J/\psi + D_s^+$

Rare decays

- Angular analysis of $B_d o K^*(892) \mu^+ \mu^-$
- Search for $B_{(s)} \rightarrow \mu \mu$
- Search for $au
 ightarrow 3\mu$
- R(K*) measurement

Physics with $B \rightarrow J/\psi$

- B^+ cross-section measurement
- Searches for pentaquarks
- CP violation in $B_s^0 \rightarrow J/\psi\phi$
- B_d^0 and B^+ lifetime measurement
- Search for $Z_c(4200)$ in $B^0 B J/\psi K \pi$ decays
- Study of $B_c^+ \rightarrow D_s^{(*)+}$
- B_c/B^+ production ratio measurement

Measurement of the CP-violating phase ϕ_s in $B_s^0 \rightarrow J/\psi \phi$ decays in ATLAS at 13 TeV

- In $B_s^0 \rightarrow J/\psi \phi$, CP violation appears due to interference between a direct decay and a decay with $B_s^0 - \bar{B_s^0}$ mixing
- CP violation measured via CP-violation phase ϕ_s
- ϕ_s predicted by SM and related to CKM matrix

$$\phi_{s} = 2 \arg \left[\frac{V_{ts} V_{tb}^{*}}{V_{cs} V_{cb}^{*}} \right] = -0.03696^{+0.00072}_{-0.00082} \text{ rad}$$

Any violation from this values would be hint for New Physics (Beyond Standard Model physics)

Motivation

CP violation measurement in $B_s^0 \rightarrow J/\psi \phi$

The other quantities in B_s^0 mixing are $\Delta m_s = |m_L - m_H|$, $\Delta \Gamma_s = \Gamma_s^L - \Gamma_s^H$ and $\Gamma_s = (\Gamma_s^L + \Gamma_s^H)/2$

- $\Delta\Gamma_s$, Γ_s not as sensitive to New Physics, however the measurement is interesting to test the theory ($\Delta\Gamma_s = (0.091 \pm 0.013) \text{ ps}^{-1}$)
 - $\Delta \Gamma_s [\mathrm{ps}^{-1}]$ D0 8 fb⁻¹ 68% CL contours $(\Delta \log \mathcal{L} = 1.15)$ 0.12 CMS 19.7 fb⁻¹ 0.10 Combined CDF 9.6 fb⁻¹ 0.08 LHCb 3 fb⁻¹ ATLAS 19.2 fb-0.06 -0.4 -0.2 -0.0 0.2 0.4 $\phi_{\circ}^{c\bar{c}s}$ [rad] Eur. Phys. D. C 81 (2021) 226

Situation before LHC Run2:

Eur. Phys. J. C 81 (2021) 342

CP Violation and Lifetime Measurement: Angular Analysis

- $B_s^0 \rightarrow J/\psi \phi$ is a decay of pseudoscalar into a pair of vectors
- Final state: admixture of CP-odd (L = 1) and CP-even (L = 0, 2) states
- Contribution from non-resonant S-wave $B_s^0 \to J/\psi K^+ K^-$ *CP*-odd
- Distinguishable through time-dependent angular analysis
- differential decay rate depends on amplitudes A_0 , A_{\perp} , A_{\parallel} , A_S (and interferences) and angles θ_T , ψ_T , ϕ_T

Unbinned maximum likelihood fit performedon the combined data samples extracting parameters of interest

- CP-violating phase ϕ_s
- The average decay width Γ_s and the decay width difference $\Delta\Gamma_s$
- The CP-state amplitudes at t = 0: $|A_0(0)|^2$, $|A_{\perp}(0)|^2$, $|A_{\parallel}(0)|^2$, $|A_S(0)|^2$

$$|A_0(0)|^2 + |A_{\perp}(0)|^2 + |A_{\parallel}(0)|^2 = 1$$

- The strong phases δ_{\perp} , δ_{\parallel} , $\delta_{0} = 0$, δ_{S}
- ATLAS sensitive to δ_{\perp} , $\ddot{\delta}_{\parallel}$ and $\delta_{\mathcal{S}} \delta_{\perp}$
- No direct CP violation assumed
- $\Delta m_s = |m_L m_H|$ value fixed to PDG: $\Delta m_s = 17.77 \text{ ps}^{-1}$
- Opposite side tagging (OST) used to identify initial flavour of B⁰_s

CP Violation and Lifetime Measurement: Opposite Side Tagging

- Opposite side tagging (Tight muons, Electrons, Low-p_T muons and Jets),
 - Events tagged by the method with the highest statistical power

Muon and Electron Tagging

- b
 ightarrow l transitions are clean tagging method
- b
 ightarrow c
 ightarrow l and neutral B-meson oscillations dilute the tagging
- Tracks in cone around lepton also included \Rightarrow weighted sum of charges used
- Jet-Charge
 - information from tracks in b-tagged Jet, when no lepton is found
- Calibration using $B^\pm o J \psi K^\pm$

CP Violation and Lifetime Measurement: Opposite Side Tagging

Cone around OST lepton:

$$Q = rac{\sum_{i}^{Ntracks} q^{i}(p_{\mathrm{T}}^{i})^{\kappa}}{\sum_{i}^{Ntracks} (p_{\mathrm{T}}^{i})^{\kappa}}
ightarrow P(Q|B^{\pm})$$

The probability to tag a B⁰_s meson as containing a b-quark:

$$P(B|Q)=rac{P(Q|B^+)}{P(Q|B^+)+P(Q|B^-)}$$

Tagging performance quality described by:

- Efficiency ε : Fraction of tagged events
- **Dilution:** $D = (1 2\omega)$, where ω is the mistag probability
- Tagging Power: $T = \varepsilon D^2$ figure of merit of tagger performance

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- p_T muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

2 EXPERIMENT

Unbinned maximum likelihood fit:

$$\mathcal{L} = \sum_{i=1}^{N} \{ \begin{array}{c} \text{signal} \\ | \\ w_i \end{array} \cdot \ln(\begin{array}{c} signal \\ f_s \mathcal{F}_s \end{array} + \begin{array}{c} \text{peaking background} \\ | \\ f_s \mathcal{F}_{B_d^0} \mathcal{F}_{B_d^0} + f_s f_{\Lambda_b} \mathcal{F}_{\Lambda_b} \end{array} + \begin{array}{c} \text{combinatorial background} \\ | \\ (1 - f_s)(1 + f_{B_d^0} + f_{\Lambda_b}) \mathcal{F}_{\text{bkg}} \end{array}) \}$$

Base observables: mass *m*, lifetime *t*, angles $\Omega(\psi_T, \phi_T, \theta_T)$

- Conditional observables per-candidate: mass and lifetime resolution (σ_m , σ_t), candidate p_T , tagging probability and method
- Likelihood corrected to tau weight trigger efficiencies

Contributions from: $B_d \to J/\psi K^{*0}$, $B_d \to J/\psi K\pi$ and $\Lambda_b \to J/\psi Kp$ misidentified as B_s^0 candidates

- Efficiencies and acceptance from MC
- BR from PDG
- Fragmentation fractions from other measurements

Extensive systematic study was performed

- Here is the list of the major contributions to the total systematics:
 - Flavour tagging: calibration, $B_s^0 B^{\pm}$ MC difference and dependencies on the pile-up distribution
 - Fit bias: fit stability is validated by the pseudo-experiments with default fit results
 - Background angles model: varying the bin boundaries, invariant mass window and sideband definition
 - Best candidate selection: statistically equivalent sample is created where all candidates in the event are retained
 - Angular acceptance method: different acceptance functions are calculated using different numbers of p_T bins as well as different widths and central values of the bins

CP Violation and Lifetime Measurement: Results

Results - two solutions observed for strong phases

- Well separated local maxima in the likelihood
 - Interesting parameters are almost insensitive to strong phase ambiguity

CP Violation and Lifetime Measurement: Results

- Projections of mass $m(J/\psi\phi)$, lifetime t and three transversity angles $\Omega(\psi_T, \phi_T, \theta_T)$
- Combinatorial background for angular distribution use Legendre polynomials from sidebands

32 / 46

ATLAS

Data Total Fit

- Used 80.5 fb⁻¹ of 2015-17 data from *pp* collisions collected by the ATLAS detector
 Combined with Run 1 results: 4.9 fb⁻¹
 - (7 TeV, *pp* 2011) and 14.3 fb⁻¹ (8 TeV, *pp* 2012)

$$\phi_s = -87 \pm 36 (\text{stat.}) \pm 21 (\text{syst.}) \text{ mrad}$$

$$\Delta\Gamma_s = 65.7 \pm 4.3 (\text{stat.}) \pm 3.7 (\text{syst.}) \text{ ns}^{-1}$$

$$\Gamma_s = 670.3 \pm 1.4 (\text{stat.}) \pm 1.8 (\text{syst.}) \text{ ns}^{-1}$$

CP Violation Measurement: HL-LHC Prospects

ATL-PHYS-PUB-2018-041

Updated tracking (ITk): proper decay time resolution improved by 21% w.r.t. Run 2

Three trigger scenarios:

- 2MU10: $18 \times \textit{N}_{\rm Run1}$
- MU6_MU10: $60 \times N_{\mathrm{Run1}}$
- 2MU6: 100 \times $\textit{N}_{\rm Run1}$
- N_{sig} and σ_t scale with statistics, tag power not scaled
- Expected improvements w.r.t. Run 1
 - ϕ_s stat. uncertainty: better by \sim 9× to 20×
 - $\Delta\Gamma$ stat. uncertainty: better by $\sim 4\times$ to $10\times$
- LHC Run2 results not included in this study

B_d^0 lifetime measurement

B_d^0 lifetime measurement

Lifetime of B_s^0 from CP violation measurent shows tension with other experiments results

Complementary measurement of B-meson lifetimes needed

- $\blacksquare B_d^0 \text{ is a mixture of } B_L^0 \text{ and } B_H^0$
 - The effective lifetime is measured:

$$\tau_{eff} = \frac{1}{\Gamma} \frac{1}{1 - y^2} \left(\frac{1 + Ay + y^2}{1 + Ay} \right)$$

• $\Delta\Gamma = \Gamma_L - \Gamma_H$, $y = \Delta\Gamma/(2\Gamma)$ and A depends on decay rate of the members of the system to final state

Fractions of lifetime can be predicted by Heavy Quark Expansion (HQE) framework

• decay rate of a hadron containing a heavy quark (b,c) can be expressed in a power series of the inverse of the heavy quark mass

 $\tau(B^+)/\tau(B^0_d) = 1.082^{+0.022}_{-0.026}$

 $au(B_d^0)/ au(B_d^0) = 1.0007 \pm 0.0025$

Psedo-proper lifetime used in the analysis:

$$au = rac{L}{eta \gamma c} \quad o \quad au = rac{L_{xy} m_{B_d}}{P_{\mathrm{T}}(B_d)}$$

Unbinned mass-lifetime fit performed, lifetime per-candidate-error used (Punzi)

$$L = \prod_{i=1}^{N} (f_{sig} \mathcal{M}_{sig} T_{sig} + f_{peak} \mathcal{M}_{peak} T_{peak} + (1 - f_{sig} - f_{peak}) \mathcal{M}_{bkg} T_{bkg})$$

- **Signal:** mass described by two Johnson functions, lifetime by single exponential convoluted by resolution function (3 gaussian)
- **Background:** mass described by two exponential functions, lifetime by three exponential convoluted by resolution function

Peaking background: $B^{\pm} \rightarrow J/\psi K^{\pm}$, $B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_d \rightarrow J/\psi \rho(\pi^+\pi^-)$

Peaking ackground missing now - WIP

B_d^0 lifetime measurement

Search for $B^0_{(s)} \rightarrow \mu \mu$

- FCNC processes highly supressed in SM, significant deviations predicted by theories beyond SM
- $\blacksquare \ B^0_s \to \mu \mu \text{ and } B^0 \to \mu \mu \text{ highly sensitive to New Physics}$
- SM predictions: $\mathcal{B}(B_s^0 \to \mu\mu) = (3.66 \pm 0.14) \cdot 10^{-9}$ and $\mathcal{B}(B^0 \to \mu\mu) = (1.03 \pm 0.05) \cdot 10^{-10}$
- Branching fractions are measured relative to the reference decay mode $B^{\pm} \rightarrow {
 m J}/\psi K^{\pm}$:

$$\mathcal{B}\left(B^{0}_{(s)} \to \mu\mu\right) = N_{d(s)} \frac{\mathcal{B}\left(B^{\pm} \to \mathrm{J}/\psi K^{\pm}\right) \times \mathcal{B}\left(\mathrm{J}/\psi \to \mu\mu\right)}{N_{\mathrm{J}/\psi K^{\pm}} \frac{\varepsilon_{\mu\mu}}{\varepsilon_{\mathrm{J}/\psi K^{\pm}}}} \frac{f_{u}}{f_{d(s)}}$$

- Branching ratios known from PDG, $f_u/f_{d(s)}$ from HFLAV
- Relative reconstruction efficiencies estimated from MC (corrected for data-MC differences): $\varepsilon_{\mu\mu}/\varepsilon_{J/\psi K^{\pm}} = 0.1176 \pm 0.0009 (stat.) \pm 0.0047 (syst.)$
- Yields $N_{d(s)}$ and $N_{{
 m J}/\psi{
 m K}^\pm}$ exctracted from unbinned ML fit
- $\blacksquare B^0_s
 ightarrow {
 m J}/\psi \phi$ used as control channel

 $B^0_{(s)} \to \mu \mu$

Partially reconstructed b-hadrons

- one or more of the final-state particles (X) in a *b*-hadron decay is not reconstructed
- Mostly in the low di-muon mass region

Peaking backgrounds

- $B^0_{(s)} \rightarrow hh'$ decays, both hadrons misreconstructed as muons
- Simulated and fixed in the mass fit

Continuum background

- Muons originating from uncorrelated hadron decays
- Reduced by BDT (15 variables)

- BDT with 15 variables used (kinematics, isolation)
- BDT output validated on reference and control channels
- Signal region divided into four BDT bins
- B⁰_s and B⁰ yields extracted from simultaneous unbinned ML fit

Results combined with ATLAS Run1:

$$\begin{split} \mathcal{B}\left(B_s^0 \to \mu\mu\right) &= \left(2.8^{+0.8}_{-0.7}\right) \cdot 10^{-9}\\ \mathcal{B}\left(B^0 \to \mu\mu\right) &< 2.1 \cdot 10^{-10} \text{at } 95\% \text{ CL} \end{split}$$

Combined measurement compatible with SM at 2.4σ

- Statistic uncertainties dominate
- 2.1 σ compatibility of LHC combination and SM

 $B^0_{(s)} \rightarrow \mu \mu$

Summary

- LHC accelerating ring introduced
- ATLAS has rich program, B-physics play important role
- Many B-physics analyses provide very interesting results

Back-up Slides

Λ_b Lifetime Measurement in ATLAS Run1

- Used 4.9 fb⁻¹ of 2011 data from *pp* collisions collected by the ATLAS detector at energies √s =7 TeV
- Decay channel $\Lambda_b \to J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$ used
- Mass-lifetime unbinned maximum likelihood fit used

$$au_{\Lambda_b} = 1.449 \pm 0.036 ({
m stat.}) \pm 0.017 ({
m syst.}) ~{
m ps}$$

■ $B_d \rightarrow J/\psi K_S$ lifetime measured as a cross-check

$$\tau_{\Lambda_b} = 1.509 \pm 0.012 (\text{stat.}) \pm 0.018 (\text{syst.}) \text{ ps}$$

$\Delta \Gamma_d / \Gamma_d$ of the $B^0 - \overline{B}^0$ system in ATLAS Run1

- Used 25.2 fb⁻¹ of 2011-12 data from *pp* collisions collected by the ATLAS detector at energies $\sqrt{s} = 7$, 8 TeV
- B^0 production asymmetry measured in $B_d \rightarrow J/\psi K^{*0}$:

 $A_P = (+0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$

• $\Delta\Gamma_d/\Gamma_d$ extracted from the ratio (determined by MC) of reconstruction efficiencies of $B_d \rightarrow J/\psi K^{*0}$ and $B_d \rightarrow J/\psi K_S$ (comparing the decay time distributions)

$$\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1 (\text{stat.}) \pm 0.9 (\text{syst.})) \times 10^{-2}$$

	ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_{S}$
	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	[10-3]	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3} rad]$	$[10^{-3}]$ rad	[10 ⁻³ rad]
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Acceptance	0.5	0.3	< 0.1	1.0	0.9	2.9	37	64	8.6
Time efficiency	0.2	0.2	0.5	< 0.1	< 0.1	0.1	3.0	5.7	0.5
Best candidate selection	0.4	1.6	1.3	0.1	1.0	0.5	2.3	7.0	7.4
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of p_T bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass window	9.3	3.3	< 0.1	0.4	0.8	0.4	17	8.6	1.8
Choice of sidebands intervals	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B^0_d	2.6	1.1	< 0.1	0.2	3.1	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. p_T bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8.0	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
Total	22	4.3	2.2	2.3	3.8	4.6	55	88	39
								K	ΛT

Systematic uncertainties

Solution a:

	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	-0.080	0.017	-0.003	-0.004	-0.007	0.007	0.004	-0.007
$\Delta\Gamma$	1	-0.586	0.090	0.095	0.051	0.032	0.005	0.020
Γ_s		1	-0.125	-0.045	0.080	-0.086	-0.023	0.015
$ A_{ }(0) ^2$			1	-0.341	-0.172	0.522	0.133	-0.052
$ A_0(0) ^2$				1	0.276	-0.103	-0.034	0.070
$ A_S(0) ^2$					1	-0.362	-0.118	0.244
δ_{\parallel}						1	0.254	-0.085
δ_{\perp}							1	0.001

Solution b:

	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$	
ϕ_s	-0.084	0.019	-0.011	-0.003	-0.006	0.007	0.005	-0.006	
$\Delta\Gamma$	1	-0.586	0.090	0.096	0.057	-0.029	-0.010	0.021	
Γ_s		1	-0.116	-0.048	0.071	0.070	0.017	0.015	
$ A_{ }(0) ^2$			1	-0.338	-0.110	-0.444	-0.106	-0.052	
$ A_0(0) ^2$				1	0.269	0.080	0.017	0.070	
$ A_S(0) ^2$					1	0.291	0.060	0.251	
δ_{\parallel}						1	0.235	0.097	
δ_{\perp}							1	0.056	
-		-						L E	X P E R I M E N 1

k	$\mathcal{O}^{(k)}(t) \qquad \qquad \pm \to B_s/\bar{B_s}$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[\left(1 + \cos\phi_s\right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 - \cos\phi_s\right) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$]
5	$ A_{ }(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{ })\sin\phi_s$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))$)]
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-1\sum_{k}t} - e^{-1H^*t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
7	$\pm e^{-s_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))$ $\pm A_c(0) ^2 \left[(1 - \cos \phi_{\perp}) e^{-\Gamma_{L}^{(s)} t} + (1 + \cos \phi_{\perp}) e^{-\Gamma_{R}^{(s)} t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_{\perp} \right]$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -\sin^2\theta_{\rm T}\cos^2\phi_{\rm T} \end{bmatrix}$
8	$\frac{ A_{S}(0) A_{U}(0) _{\pi}^{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{U} - \delta_{S})\sin\phi_{s}}{ A_{S}(0) A_{U}(0) _{\pi}^{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{U} - \delta_{S})\sin\phi_{s}}$	$\frac{1}{3}\sqrt{6}\sin\psi\tau\sin^2\theta\tau\sin2\phi\tau$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))$)] 3 V 0 0 m 4 1 0 m 0 1 0 m 2 4 1
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$\left[(1 - \cos\phi_s) e^{-\Gamma_{\rm L}^{(*)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(*)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))$)]

CP Violation Measurement: Using Tag Information in B_s^0 Fit

Opposite side lepton or jet, with tracks in cone $\Delta R < 0.5$

$$\mathcal{Q} = rac{\sum_{i}^{Ntracks} q^{i}(\mathbf{p}_{\mathrm{T}}^{i})^{\kappa}}{\sum_{i}^{Ntracks} (\mathbf{p}_{\mathrm{T}}^{i})^{\kappa}}$$

Events separated - discrete contribution (cone charge +1 or -1) and continuous contribution

- By using calibration curves: we get the B_s^0 tag probability
- Fractions of events f_{+1} and f_{-1} with charges +1 and -1, respectively, are determined separately for signal and background
- Remaining fraction of events, $1 f_{+1} f_{-1}$, constitute the continuous part

Tag Method	Sig	nal	Backg	ground
	f_{+1} f_{-1}		f_{+1}	f_{-1}
Tight μ	0.073 ± 0.005	0.081 ± 0.006	0.051 ± 0.001	0.053 ± 0.001
Medium <i>e</i>	0.18 ± 0.01	0.16 ± 0.01	0.159 ± 0.003	0.161 ± 0.003
Low-pt μ	0.120 ± 0.008	0.125 ± 0.008	0.074 ± 0.001	0.080 ± 0.001
Jets	0.038 ± 0.002	0.039 ± 0.002	0.0324 ± 0.0004	0.0323 ± 0.0004

CP Violation Measurement: Using Tag Information in B_s^0 Fit

Opposite side lepton or jet, with tracks in cone $\Delta R < 0.5$

$$Q = rac{\sum_{i}^{Ntracks} q^{i}(p_{\mathrm{T}}^{i})^{\kappa}}{\sum_{i}^{Ntracks} (p_{\mathrm{T}}^{i})^{\kappa}}$$

Events separated - discrete contribution (cone charge +1 or -1) and continuous contribution

- By using calibration curves: we get the B_s^0 tag probability
- Fractions of events f_{+1} and f_{-1} with charges +1 and -1, respectively, are determined separately for signal and background

Remaining fraction of events, $1 - f_{+1} - f_{-1}$, constitute the continuous part

Tag method	Signal	Background
Tight μ	0.0400 ± 0.0006	0.0316 ± 0.0001
Electron	0.0187 ± 0.0004	0.01480 ± 0.0001
Low-pT μ	0.0291 ± 0.0005	0.0264 ± 0.0001
Jets	0.144 ± 0.001	0.1196 ± 0.0002
Untagged	0.767 ± 0.003	0.8077 ± 0.0005

CP Violation Measurement: Tagging

