Inclusive dijet cross-section measurements at the ATLAS experiment

Ota Zaplatílek¹

¹ Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

JCF Summer Workshop, June 16, 2022

Outline

- motivation for jet measurements
- ATLAS detector
- main dijet variables
- ATLAS MC
- ATLAS Data
- one-dimensional inclusive dijet measurement
- two-dimensional inclusive dijet measurement
- three-dimensional inclusive dijet measurement
- dedicated studies

QCD Lagrangian, quarks, gluons and jets

QCD Lagrangian with quarks and gluons

=

$$\mathcal{L}_{QCD} = \sum_{q} \left[i \bar{\psi}_{q} \gamma^{\mu} \left(\partial_{\mu} - i g_{s} \frac{\lambda^{a}}{2} A^{a}_{\mu}(x) \right) \psi_{q} - m_{q} \bar{\psi}_{q} \psi_{q} \right] + \mathcal{L}_{gauge}$$
$$\mathcal{L}_{gauge} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu}$$
$$-\frac{1}{4} A^{a}_{\mu\nu} A^{a\mu\nu} - \frac{1}{2} g_{s} f^{abc} (\partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu}) A^{b\mu} A^{c\nu} - \frac{1}{4} g^{2}_{s} f^{abc} f^{ajk} A^{b}_{\mu} A^{c}_{\nu} A^{j\mu} A^{k\nu}$$
(1)

Quarks and gluons are not directly observed in experiments; Experimenters usually observe the secondary hadronic particles produced in the same direction after the quark/gluon fragmentation. Such secondary particles are found in collimated showers, so-called jets.

Motivation for jet measurements

jets can be matched to quarks/gluons

Theoretical motivation:

- structure of proton
- parton distribution functions q_i(x, μ_F)
- splitting functions $P_{ij}\left(\frac{x}{y}\right)$
- running α_s(μ²_B)
- test of asymptotic freedom of QCD
- potential New Physics at TeV scale

Experimental motivation:

- large theoretical unc. coming from QCD
- background for most of Standard Model measurements

$$\mu_R^2 \frac{\partial \alpha_s}{\partial \mu_R^2} = -(b_0 \alpha_s^2 + b_1 \alpha_s^3 + b_2 \alpha_s^4 + \dots)$$

$$\alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 - B_s \cdot \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}}$$

$$\mathsf{B}_{s} = -\frac{11N_{C} - 2N_{f}}{6\pi}$$

ATLAS detector

ATLAS calorimeter system

- essential for jet measurements
- topological jets built from topological clusters in the calorimeter

Event display

- dijet event, proton–proton collision, $\sqrt{s} = 13$ TeV, ATLAS data 2017
 - transverse plane to beam direction (left)
 - longitudinal Z-Y plane (right-bottom)
 - $\eta \phi$ plane (right-top)

- exclusive dijet event
 - *p*_{T,1} = *p*_{T,2} = 2.9 TeV, *y*₁ = −1.2, *y*₂ = 0.9
 - m_{ii} = 9.3 TeV, y^{*} = 1.05, y_{boost} = 0.15

Dijet variables

leading jet:

- transverse momentum p_{T,1}
- rapidity y₁

subleading jet:

- transverse momentum p_{T,2}
- rapidity y₂

inclusive dijet defined as a vector sum of leading and subleading jets in the event with at least two jets most important variables for dijet analysis: m_{ij} , y^* , y_{boost}

• $y^* = \frac{1}{2} |y_1 - y_2|$

- forward vs. central jets
- sensitive to New Physics
- New Physics models predict different shape; more dijets with low y*

 $y_{\text{boost}} = \frac{1}{2} |y_1 + y_2|$

- same-side vs. opposite-side jet event
- sensitive to pdf
- low y_{boost} for approx. equal momentum fractions of incoming partons x₁, x₂
- high y_{boost} for very asymmetric momentum fractions of incoming partons

 x_1, x_2 ; one very high, one very low

Selection criteria for inclusive dijet measurements

- proton–proton collisions at $\sqrt{s} = 13 \text{ TeV}$
- anti-k_T R = 0.4 calibrated topological jets

Simplified dijet selection:

- 1. identify well reconstructed events (data quality)
- 2. identify well reconstructed jets (jet quality)
- 3. identify inclusive di-jet using dijet selection criteria

Selection criterion	Applied condition	
jet multiplicity njets	$n_{\rm jets} \ge 2$	
leading jet p _{T,1}	$p_{T,1} > 75 \text{GeV}$	
subleading jet p _{T,2}	$p_{\rm T,2} > 75 {\rm GeV}$	
leading jet y1	$ y_1 < 3.0$	
subleading jet y2	$ y_2 < 3.0$	
dijet $y^* = \frac{1}{2} y_1 - y_2 $	y* < 3.0	
dijet $H_{\rm T}^{\rm two} = p_{\rm T,1} + p_{\rm T,2}$	$H_{\rm T}^{\rm two} > 200~{ m GeV}$	

Table: Per-dijet selection criteria.

ATLAS MC

- jet/dijet cross-section falls steeply over 10 orders of magnitude
- MC generated in multiple p
 _T slices (13 slices for nominal MC Pythia 8)
- various pile-up conditions in LHC run2 phase:
 - MC16a (Data 2015+16)
 - MC16d (Data 2017)
 - MC16e (Data 2018)
 - MCFullRun2 as MC16a+d+e (Data 2015+16+17+18)

10/25

ATLAS MC Pythia 8

- Pythia 8 as nominal LO MC
- final MC distribution as a sum of all relevant JZX slices

- low JZX slices dominate to low jet p_T, angular variables in the whole range
- high JZX slices dominate high jet pT
- high dijet mass events originate from high p_T jets (high JZX) or low p_T jets with high angular separation (low JZX)
- MC16a+d+e need in case of full LHC run 2 measurement

ATLAS Data and Triggers

- single jet p_T High Lever Triggers¹
- trigger combination using so-called leading jet p_T trigger strategy
- final distribution is reached as a sum of all relevant trigger distributions

example for leading jet pt cross-section using the ATLAS data 2018

¹e.q. HLT_jXXX trigger fires if the event includes at least one jet with $p_T > XXX$ GeV, the event is recorded with predefined prescale.

ATLAS Data and Triggers

- low (prescaled) trigger dominates to angular distributions like y^{*}, y_{boost}
- highest (unprescaled) trigger dominates to high jet p_T and high m_{jj}
- final distribution is reached as a sum of all relevant trigger distributions

some more examples for one-dimensional dijet cross-section using the ATLAS data 2018

- the ATLAS data of of 2015,16,17,18 need in case of full LHC run 2 measurement years
- applied triggers differs in various years of data acquisition

Resolution studies

- finite detector resolution effects
- dijet mass resolution² $\sigma \left(\frac{m_{jj}^{\text{icco}}}{m_{jj}^{\text{truth}}} \right)$
- 2D resolution histogram in a given range of y^{*}, y_{boost}, m_{ii} (left)
- 1D projection to a given range of m^{truth}_{ii}, Gaussian fit, sigma extraction (middle)
- 1D response histogram as a iteration over all possible ranges of m^{truth}_{ii} (right)
- 1D fit of response function:

$$\sigma(X)=\frac{S}{X}+\frac{N}{\sqrt{X}}+C.$$

- X as variable of interest, m_{ii}
- S as Stochastic term
- N as Noise term
- C as Constant term

It has been done for various of y^* and y_{boost} bins. Considering 6 bins in y^* and y_{boost} , there are 21 response functions.

² Dijet mass resolution as a Gaussian sigma of m^{reco} / m^{truth} histogram in a given range of y*, yboost

Folding and Unfolding

- each measurement suffers by detector effects:
 - detector resolution
 - finite acceptance
 - finite efficiency
- reco level distribution (measured distribution) is not the same as truth level distribution (generated distribution)
- reco level distribution is folded (convoluted) truth level distribution with the detector resolution; inverse operation is called unfolding (deconvolution)

Folding equation:

$$\nu_i = \sum R_{ij} \mu_j$$

- ν as reco level distribution (left)
- µ as truth level distribution (right)
- R as response matrix derived from full detector simulation using Geant4 (middle)

|▶ ◀@▶ ◀ 돋▶ ◀ 돋▶ / 돋|ㅌ '원�?

15/25

RooUnfoldResponse 2D - m_{ii} vs. y*

- Unfolding and Response studies within RooUnfold package
- 1D, 2D, 3D measurements possible (but not optimized by default)
- example for 2D measurement of incl. dijet mass and y*

- response histogram³ (top-left)
- response matrix⁴ (top-right)
- reco level distribution (bottom-left)
- truth level distribution (bottom-right)

³number of reconstructed events in reco bin *i* and generated in truth bin *j*

⁴ conditional prob. to measure an event in reco bin *i* if it was generated in truth bin *j*

RooUnfoldResponse 2D - mij vs. yboost

- very similar study for m_{jj} vs. y_{boost}
- see migration between various bins of m_{jj} and various bins of y_{boost}

 multidimensional measurements should include full information about the event migration (not like one-dimensional measurement in several windows for your second variable)

RooUnfoldResponse 3D - m_{ii} vs. y* vs. y_{boost}

- potential 3D measurement of m_{jj} vs. y^{*} vs. y_{boost} attach CPU and memory limitations
- propagation of syst. unc. through unfolding as a challenge (we have ≈ 1400 syst. unc. for the ATLAS jets)

Bin Optimization

- fine response histogram, fine reco level distribution and fine truth level distribution for bin optimization; considering high enough statistic MC
- useful variables purity and stability:

stability =
$$\frac{\text{# of expected events passed selection criteria in the reco bin i and the same truth bin i}{\text{# of expected events passed selection criteria in the truth bin i}}$$

purity = # of expected events passed selection criteria in the reco bin i and the same truth bin i

of expected events passed selection criteria in the reco bin i

- algorithm: sum neighboring bins in response histogram, truth level distribution and reco level distribution consistently, until the purity is high enough
- example for 2D measurement of incl. dijet mass vs. y*, using 6 equidistant bins of y* and required at least 50% purity and stability

- last bins included/excluded according stat. unc. in the ATLAS data
- improved χ^2/nfd with new binning expected
- similar studies also for 1D, 2D, 3D measurements of incl. jets and incl. dijets

Data to MC - dijet - m_{ii} vs. y^*

- comparison for ATLAS Data and LO MC Pythia 8
- considering:
 - various years of data acquisitions
 - various MC campaigns
 - data (Blackish), MC truth (Greenish), MC reco (Redish)

- comparison for ATLAS Data and LO MC Pythia 8
- considering:
 - various years of data acquisitions
 - various MC campaigns
 - data (Blackish), MC truth (Greenish), MC reco (Redish)

Data to MC - leading and subleading jets

• Data to MC differences due to LO MC Pythia 8 missmodelling of forward jets

LO MC Pythia 8:

- decent description of central (sub)leading jet
- poor description of forward jets
- the differences are propagated from leading and subleading jets to dijets by construction
- higher order MC needed (NLO, NNLO) for Data to MC comparison
- still acceptable for binning, response, unfolding studies etc.

- similar study for 3D measurement of m_{jj} vs. y^{*} vs. y_{boost}
- 21 plots in total due to kinematics restriction of y* and y_{boost}
- here $0.0 < y^* < 0.0$ and all relevant y_{boost} (6 plots)
- other remaining plots available in back-up

Summary

- inclusive dijet measurements using the ATLAS experiment in progress
- for the first time
 - two-dimensional measurement for m_{ii} vs. y^{*} with 2D unfolding⁵
 - two-dimensional measurement for m_{jj} vs. y_{boost}
 - possible three-dimensional measurement m_{ij} vs. y^{*} vs. y_{boost}
- following plans:
 - finish multidimensional unfolding
 - extraction of systematic unc.
 - propagation systematic unc. through unfolding
 - preparation of NLO (NNLO) MC

⁵ previously it has been done 1D measurements in windows of y^* ignoring migration in y^* bins = $\neg \land \bigcirc$

Thank you for your attention.

BACK-UP

links:

- ATLAS detector figure taken from here.
- ATLAS calorimeter system figure taken from here.
- ATLAS Event display dijet event figure taken from here.
- ATLAS Pile-up taken from here
- ATLAS alpha s taken from here
- y^* and y_{boost} plane taken from here.

Dijet mass resolution for all 21 y^* and y_{boost} intervals

- considering 6 equidistant bins of y* and y_{boost} from 0.0 to 3.0, then there are 21 2D response histograms
- various line various y*
- various column various yboost

Dijet mass resolution for all 21 y^* and y_{boost} intervals

- considering 6 equidistant bins of y* and y_{boost} from 0.0 to 3.0, then there are 21 1D response histograms
- various line various y*
- various column various y_{boost}

Resolution studies - results

comparison for 21 dijet mass resolutions; fixed y* bin and all relevant y_{boost} bins in each plot below

- comparable resolutions for various y_{boost} in a given y^{*} bin (color lines)
- comparison also for bin-like resolution⁶ (black lines)

There is a place for improvement, possible twice as many bins as in previous measurements.

 $^{^{\}rm 6}{\rm historically}$ the bin-width was chosen as a twice of the resolution

- similar study for 3D measurement of m_{jj} vs. y^{*} vs. y_{boost}
- 21 plots in total due to kinematics restriction of y* and y_{boost}
- here $0.5 < y^* < 1.0$ and all relevant y_{boost} (5 plots)

- similar study for 3D measurement of m_{jj} vs. y^{*} vs. y_{boost}
- 21 plots in total due to kinematics restriction of y* and y_{boost}
- here $1.0 < y^* < 1.5$ and all relevant y_{boost} (4 plots)

- similar study for 3D measurement of m_{jj} vs. y^{*} vs. y_{boost}
- 21 plots in total due to kinematics restriction of y* and y_{boost}
- here $1.5 < y^* < 2.0$ and all relevant y_{boost} (3 plots)

- similar study for 3D measurement of m_{jj} vs. y^{*} vs. y_{boost}
- 21 plots in total due to kinematics restriction of y* and y_{boost}
- fist line: $2.0 < y^* < 2.5$ and all relevant y_{boost} (2 plots)
- second line: $2.5 < y^* < 3.0$ and all relevant y_{boost} (1 plot)

9/10

Selection criterion		Applied condition
MC cleaning - ptAvg cleaning	(MC only)	$\frac{\frac{\rho_{\rm T}^{\rm avg,reco}}{\rho_{\rm T,\ 1}^{\rm truth}} < 1.4$
jet cleaning - TightOLoose1	(Data and MC, reco level only)	true
data quality - LAr, Tile, Core and Scintillator	(Data only, reco level only)	true

Table: Per-event selection criteria.