Henry Day-Hall

Design patterns for physics A brief introduction to patterns and an example of pattern use in Fastjet

Overview

- What is a pattern?
 - Scales in software and Conway's law
 - Gamma patterns by intent
- Developing fastjet plugins; an example of good pattern use in physics.
 - Template method pattern for clean code reuse
 - Strategy pattern for altering behaviour at run time
- Fastjet plugins; what other patterns would have worked here?
 - Alternatives to template method pattern
 - Alternatives to strategy pattern
 - Strong v.s. weakly typed languges
- Conclusions.

What is a pattern?

- good pattern use in physics.
 - code reuse
 - behaviour at run time
- would have worked here?
 - pattern
- Conclusions.

• Scales in software and Conway's law

Gamma patterns by intent

• Developing fastjet plugins; an example of

Template method pattern

Strategy pattern for altering

• Fastjet plugins; what other patterns

Alternatives to template method

 Alternatives to strategy pattern • Strong v.s. weakly typed languges

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

Classes, functions

Modules, Interactions

> Program, Entire work flow

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

Gamma patterns, == Gang of Four (GoF) patterns see "Design Patterns", 1977

Architecture patterns,

Classes, functions

Modules, nteractions

see "Software Architecture Patterns", 2015 📃 Entire work flow

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

- Make variations on a theme without repetition.
- Communicate flexibly between varying ulletinterfaces.
- Communicate effectively in complex structures. ullet
- Allow for changes at runtime, without excessive branching.
- Preempt problems with intentional limits ullet
- Memory management for objects.

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

- Make variations on a theme without repetition.
- Communicate flexibly between varying ulletinterfaces.
- Communicate effectively in complex structures. ullet
- Allow for changes at runtime, without excessive branching.
- Preempt problems with intentional limits. ullet
- Memory management for objects.

State **Template method** Builder Decorator

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

- Make variations on a theme without repetition.
- Communicate flexibly between varying interfaces.
- Communicate effectively in complex structures. ullet
- Allow for changes at runtime, without excessive branching.
- Preempt problems with intentional limits. ightarrow
- Memory management for objects.

Adaptor Visitor Mediator Command Composite

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

- Make variations on a theme without repetition.
- Communicate flexibly between varying ulletinterfaces.
- Communicate effectively in complex structures.
- Allow for changes at runtime, without excessive branching.
- Preempt problems with intentional limits. ullet
- Memory management for objects.

Bridge Observer Chain of responsibility Command Facade

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

- Make variations on a theme without repetition.
- Communicate flexibly between varying interfaces.
- Communicate effectively in complex structures. ullet
- Allow for changes at runtime, without excessive branching.
- Preempt problems with intentional limits. ullet
- Memory management for objects.

Abstract factory Factory method Prototype Strategy

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

- Make variations on a theme without repetition.
- Communicate flexibly between varying • interfaces.
- Communicate effectively in complex structures. ullet
- Allow for changes at runtime, without excessive branching.
- Preempt problems with intentional limits. ullet
- Memory management for objects.

Singleton Proxy

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code flexible.

- Make variations on a theme without repetition.
- Communicate flexibly between varying • interfaces.
- Communicate effectively in complex structures. ullet
- Allow for changes at runtime, without excessive branching.
- Preempt problems with intentional limits. ullet
- Memory management for objects.

Memento Flyweight

• What is a pattern?

Developing fastjet plugins; an example of good pattern use in physics

- code reuse

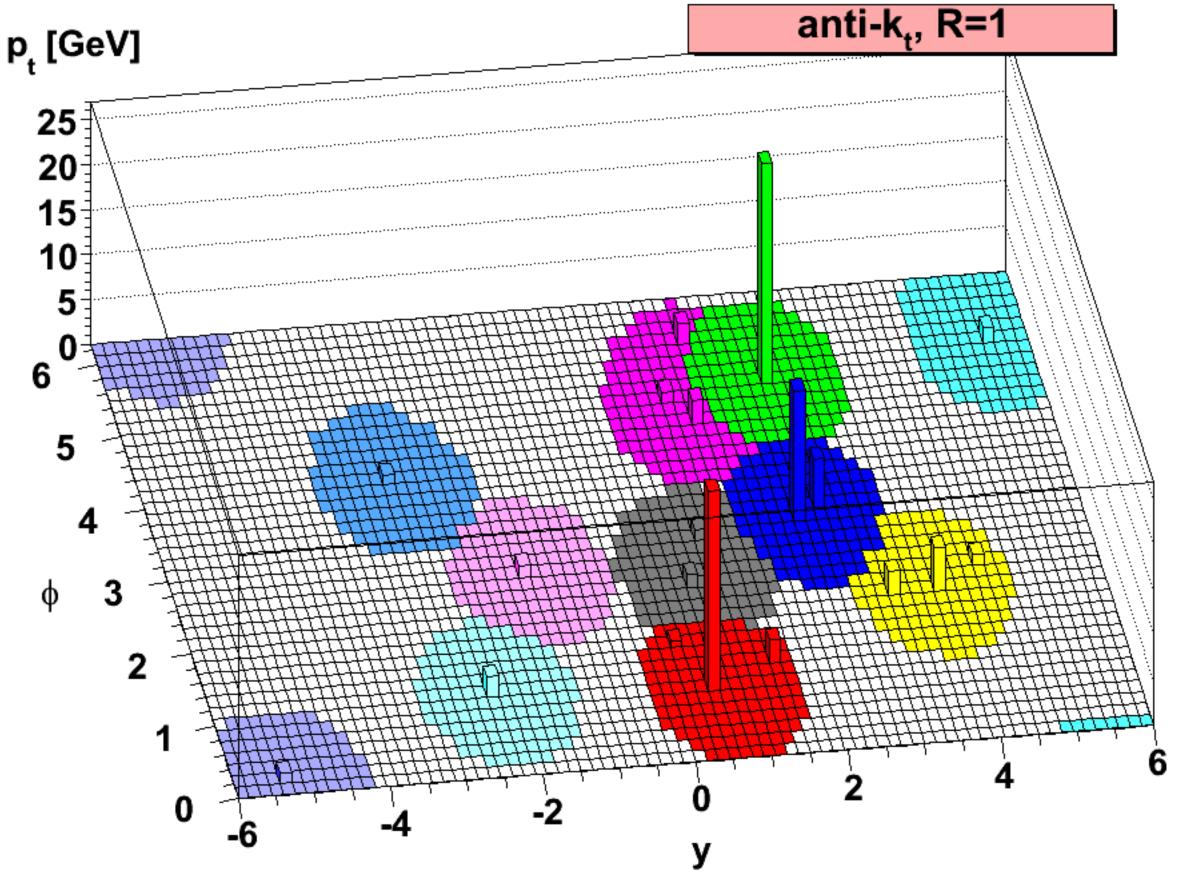
- Conclusions.

 Scales in software and Conway's law Gamma patterns by intent

Template method pattern for clean

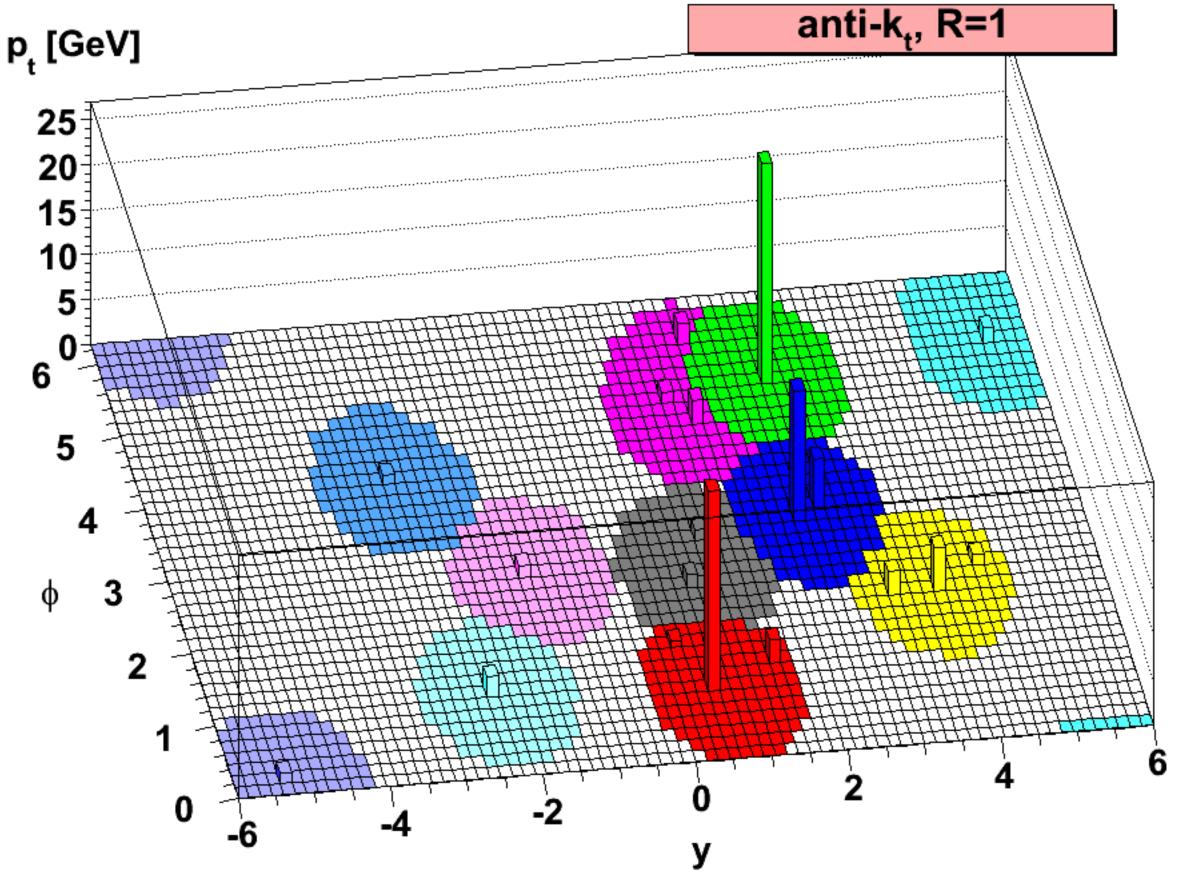
 Strategy pattern for altering behaviour at run time

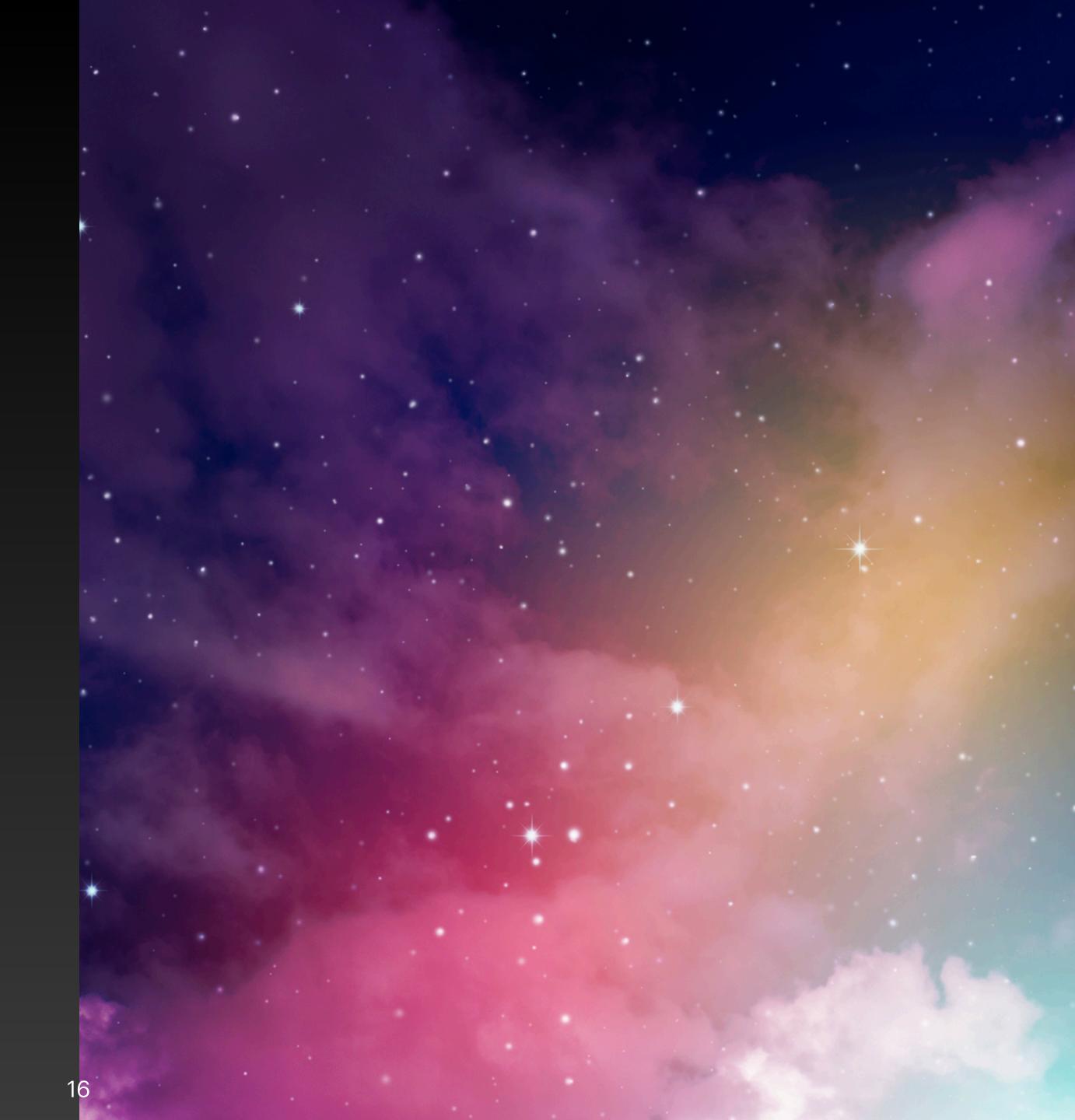
• Fastjet plugins; what other patterns would have worked here?


Alternatives to template method

Alternatives to strategy pattern Strong v.s. weakly typed languges

Fastjet - an algorithm for forming jets (possibly quite fast)


- Originally written for the gen-kt algorithms.
- Very well written, so it's the default framework for jet formation.
- Provides tools for defining new clustering algorithms, with minimal code repetition.
- Allows us to switch algorithm without recompiling.


Fastjet - an algorithm for forming jets (possibly quite fast)

- Originally written for the gen-kt algorithms.
- Very well written, so it's the default framework for jet formation.
- Provides tools for defining new clustering algorithms, with minimal code repetition.
- Allows us to switch algorithm without recompiling.

- What we want; "Make variations on a theme without repetition."
- Theme = clustering particles (with all their particle-like properties) into jets (with all their jet-like properties).
- Variation = deciding which particles go in which jets.

- What we want; "Make variations on a theme without repetition."
- Theme = clustering particles (with all their particle-like properties) into jets (with all their jet-like properties).
- Variation = deciding which particles go in which jets.

DRY = Don't Repeat Yourself

- What is used; Template method pattern
- "Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template Method lets subclasses redefine certain steps of an algorithm without changing the algorithm's structure." - Gamma 1977

/// @ingroup advanced_usage /// \class Plugin /// a class that allows a user to introduce their own "plugin" jet /// finder 111 /// Note that all the plugins provided with FastJet are derived from /// this class class Plugin{ public: /// return a textual description of the jet-definition implemented /// in this plugin virtual std::string description() const = 0; /// given a ClusterSequence that has been filled up with initial /// particles, the following function should fill up the rest of the /// ClusterSequence, using the following member functions of /// ClusterSequence: - plugin_do_ij_recombination(...) /// - plugin_do_iB_recombination(...) virtual void run_clustering(ClusterSequence &) const = 0; virtual double R() const = 0; /// return true if there is specific support for the measurement /// of passive areas, in the sense that areas determined from all /// particles below the ghost separation scale will be a passive /// area. [If you don't understand this, ignore it!] virtual bool supports_ghosted_passive_areas() const {return false;} /// set the ghost separation scale for passive area determinations

/// in future runs (strictly speaking that makes the routine
/// a non const, so related internal info must be stored as a mutable)
virtual void set_ghost_separation_scale(double scale) const;
virtual double ghost_separation_scale() const {return 0.0;}

/// if this returns false then a warning will be given
/// whenever the user requests "exclusive" jets from the
/// cluster sequence
virtual bool exclusive_sequence_meaningful() const {return false;}

/// returns true if the plugin implements an algorithm intended
/// for use on a spherical geometry (e.g. e+e- algorithms, as
/// opposed to most pp algorithms, which use a cylindrical,
/// rapidity-phi geometry).
virtual bool is_spherical() const {return false;}

/// a destructor to be replaced if necessary in derived classes...
virtual ~Plugin() {};

};

- Use existing tools for calculating rapidity and phi.
- Use existing framework for tracking available particles.
- Use existing framework for recording jet history tree.
- May use existing code to determine jet area.
- May use existing recombination scheme.

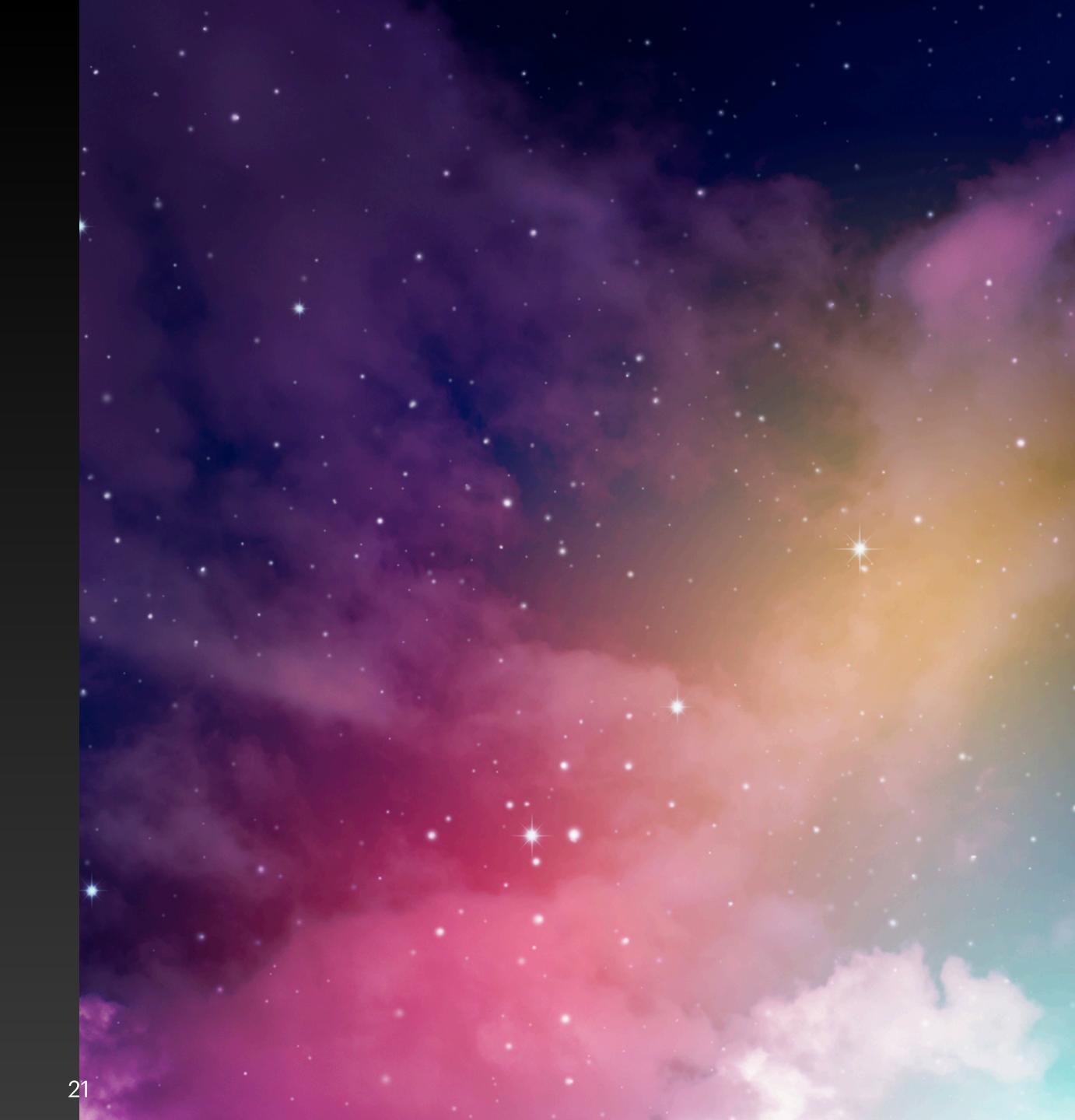
/// @ingroup advanced_usage /// \class Plugin /// a class that allows a user to introduce their own "plugin" jet /// finder 111 /// Note that all the plugins provided with FastJet are derived from /// this class class Plugin{ public: /// return a textual description of the jet-definition implemented /// in this plugin virtual std::string description() const = 0; /// given a ClusterSequence that has been filled up with initial /// particles, the following function should fill up the rest of the /// ClusterSequence, using the following member functions of /// ClusterSequence: /// - plugin_do_ij_recombination(...) /// - plugin_do_iB_recombination(...) virtual void run_clustering(ClusterSequence &) const = 0; virtual double R() const = 0; /// return true if there is specific support for the measurement /// of passive areas, in the sense that areas determined from all /// particles below the ghost separation scale will be a passive /// area. [If you don't understand this, ignore it!] virtual bool supports_ghosted_passive_areas() const {return false;} /// set the ghost separation scale for passive area determinations /// in future runs (strictly speaking that makes the routine /// a non const, so related internal info must be stored as a mutable) virtual void set_ghost_separation_scale(double scale) const; virtual double ghost_separation_scale() const {return 0.0;} /// if this returns false then a warning will be given /// whenever the user requests "exclusive" jets from the /// cluster sequence virtual bool exclusive_sequence_meaningful() const {return false;} /// returns true if the plugin implements an algorithm intended /// for use on a spherical geometry (e.g. e+e- algorithms, as /// opposed to most pp algorithms, which use a cylindrical, /// rapidity-phi geometry). virtual bool is_spherical() const {return false;} /// a destructor to be replaced if necessary in derived classes...

virtual ~Plugin() {};
};

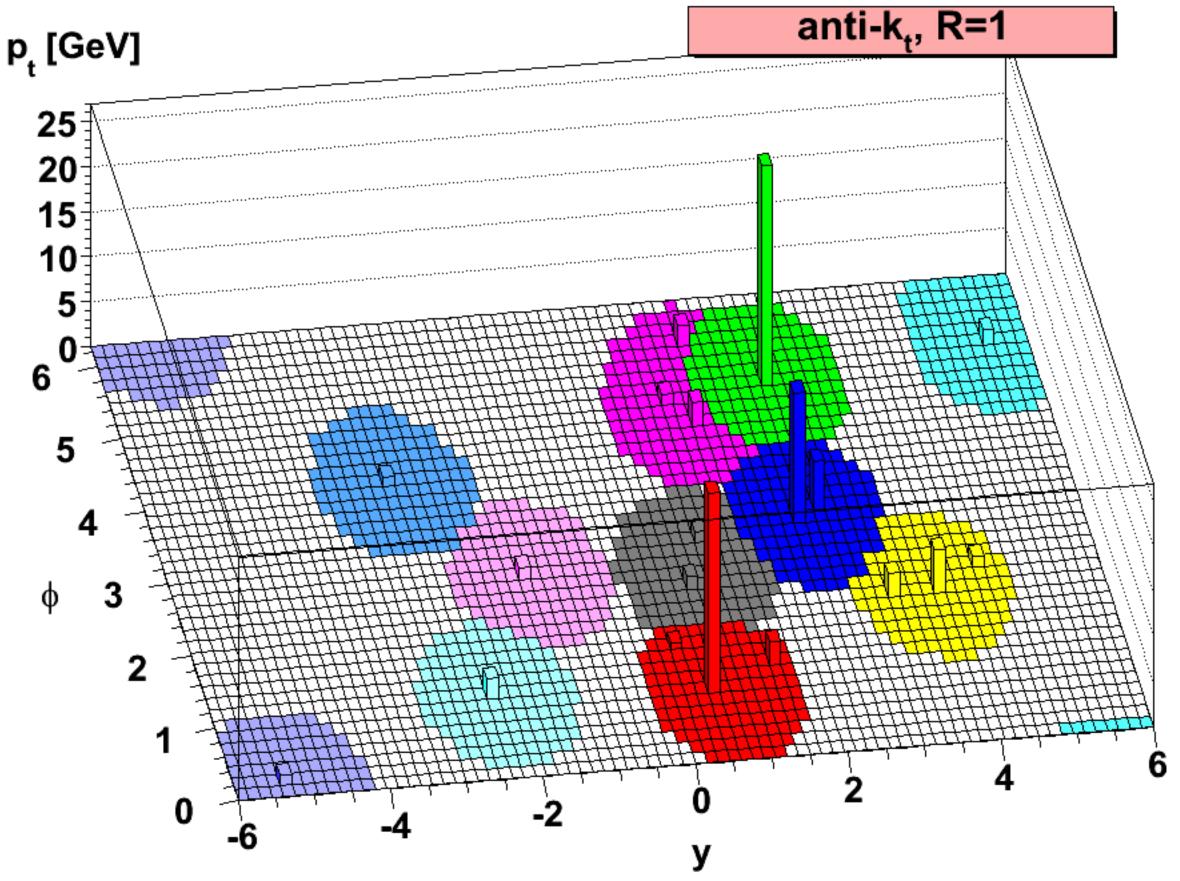
- Use existing tools for calculating rapidity and phi.
- Use existing framework for tracking available particles.
- Use existing framework for recording jet history tree.
- May use existing code to determine jet area.
- May use existing recombination scheme.

```
/// @ingroup advanced_usage
                    /// \class Plugin
                   /// a class that allows a user to introduce their own "plugin" jet
                   /// finder
                   111
                   /// Note that all the plugins provided with FastJet are derived from
                   /// this class
                   class Plugin{
                    public:
                      /// return a textual description of the jet-definition implemented
                      /// in this plugin
                     virtual std::string description() const = 0;
                     /// given a ClusterSequence that has been filled up with initial
                     /// particles, the following function should fill up the rest of the
                     /// ClusterSequence, using the following member functions of
                      /// ClusterSequence:
                          - plugin_do_ij_recombination(...)
                     /// - plugin_do_iB_recombination(...)
                     virtual void run_clustering(ClusterSequence &) const = 0;
                     virtual double R() const = 0;
                     /// return true if there is specific support for the measurement
       // This acts like any fastjet plugin since it implements run_clustering
52
       class VariableRPlugin : public JetDefinition::Plugin {
53
54
       public:
55
         /// Type of clustering
56
57
         111
         /// Since version 1.2.0 of VariableR, the clustering is treated as
58
59
         /// a generalised-kt algorithm and the previous "ClusterType"
                     virtual bool exclusive_sequence_meaningful() const {return false;}
                     /// returns true if the plugin implements an algorithm intended
                     /// for use on a spherical geometry (e.g. e+e- algorithms, as
                     /// opposed to most pp algorithms, which use a cylindrical,
                     /// rapidity-phi geometry).
                     virtual bool is_spherical() const {return false;}
                     /// a destructor to be replaced if necessary in derived classes...
```

virtual ~Plugin() {};


};

20


Switch algorithms without recompiling

- What we want; "Allow for changes at runtime, without excessive branching."
- Do want to be able to specify algorithm when I launch madanalysis, without having to recompile anything.
- Don't want lots of `if` statements, because branching is error prone and slow.

Fastjet - an algorithm for forming jets (possibly quite fast)

- Originally written for the gen-kt algorithms.
- Very well written, so it's the default framework for jet formation.
- Provides tools for defining new clustering algorithms, with minimal code repetition.
- Allows us to switch algorithm without recompiling.

Switch algorithms without recompiling

- What is used; Strategy pattern
- "Define a family of algorithms, encapsulate each one, and make them interchangeable.
 Strategy lets the algorithm vary independently from clients that use it." - Gamma 1977

	56								
•	57	//							
	58	B /// \class HOTVR							
	59								
	60 class HOTVR : public JetDefinition::Plugin {								
		41 /// "Semi-classical approach to sequential recombination algorithms							
	é	42 /// for jet clustering", arXiv:1304.1025 (2013).							
\in	e	<pre>43 class ScJet : public JetDefinition::Plugin {</pre>							
	44 52 // This acts like any fastjet plugin since it implements run_clustering								
		45	<pre>n : public JetDefinition::Plugin {</pre>						
		46 54							
		47 55 public:							
		56 /// Type of cluster	ring						
		57 ///	ing						
			L.2.0 of VariableR, the clustering is t	treated as					
			t algorithm and the previous "Cluster"						
		Jy /// a generatised-r	te atgoritenin and the previous cluster	уре					
	60	60 // defining parameters							
	61	<pre>double rho = 2000.0;</pre>							
	62	<pre>double min_r = 0.0;</pre>							
	63	<pre>double max_r = 2.0;</pre>							
	64								
	65								
	66	VariableRPlugin lvjet_plugi	nAKT(rho, min_r, max_r, VariableRPlug	in::AKTLIKE);					
	67								
			, <u>, , , , , , , , , , , , , , , , , , </u>						
	45	letDefinition::JetDefinitio	n(JetAlgorithm jet_algorithm_in,						
	46	double R_in,							
\rightarrow	47								
		48 Strategy strategy_in,							
	49 50								
	51		enm_in, _npurum(n_in), _strateg	, ocrucegy_in					

Switch algorithms without recompiling

- The family of algorithms includes inbuilt gen-kt algorithms, and plugin algorithms defined by third parties.
- These are passed to 'JetDefinition'.
- `JetDefinition` encapsulates the algorithm, providing a standard external interface.

	56						
•	57						
	58	/// \class HOTVR					
	59 60						
	6	<pre>41 /// "Semi-classical approach to sequential recombination algorithms 42 /// for jet clustering", arXiv:1304.1025 (2013).</pre>					
	6	43 class ScJet : public JetDefinition::Plugin {					
K	43 Class Scjel : public Jerberinition::Plugin {						
		52	<pre>// This acts like any fastjet plugin since it implements run_clustering</pre>				
		53	<pre>class VariableRPlugin : public JetDefinition::Plugin {</pre>				
		54					
		47 55	public:				
7		56	/// Type of clustering				
		57	///				
		58	<pre>/// Since version 1.2.0 of VariableR, the clustering is treated as</pre>				
		59	<pre>/// a generalised-kt algorithm and the previous "ClusterType"</pre>				
	60	// d	efining parameters				
	61	double rho = 2000.0 ;					
	62	<pre>double min_r = 0.0;</pre>					
	63		double max_r = 2.0;				
	64		<pre>double ptmin = 5.0;</pre>				
	65						
	66						
	67						
		JetDefi	nition::JetDefinition(JetAlgorithm jet_algorithm_in,				
	46 47		double R_in, RecombinationScheme recomb_scheme_in,				
	48		Strategy strategy_in,				
	49		int nparameters) :				

Int nparameters)

_jet_algorithm(jet_algorithm_in), _Rparam(R_in), _strategy(strategy_in) { 51

50

Success? Do the Template method and strategy patterns work well here?

🖕 contribs					
CartesianJet/	Adding user index, safer recomb scheme for Ca	artesianJet	Jun 30 2016	Э	
Centauro/	Released version 1.0.0 of Centauro		Aug 4 2020	Э	
CentauroPlugin/	Creating the basic svn structure for contrib Ce	ntauroPlugin	Aug 3 2020	Э	
ClusteringVetoPlugin/	Released version 1.0.0 of ClusteringVetoPlugin	1	May 4 2015	୭	
ConstituentSubtractor/	Released version 1.4.5 of ConstituentSubtract	or	Feb 23 2020	୭	
EnergyCorrelator/	Released version 1.3.1 of EnergyCorrelator		Feb 10 2018	୭	
FlavorCone/	Released version 1.0.0 of FlavorCone		Sep 7 2017	Э	
GenericSubtractor/	fixed typo in comment		Mar 30 2016	୭	
HOTVR/	Speed improvements due to N2Tiled and N2P	lain clustering, available in FJ3.2	Sep 29 2016	୭	
JetCleanser/	Released version 1.0.1 of JetCleanser		Aug 16 2014	Э	
JetFFMoments/	Released version 1.0.0 of JetFFMoments		Feb 7 2013	୭	
JetsWithoutJets/	Released version 1.0.0 of JetsWithoutJets		Feb 22 2014	Э	
LundPlane/	Released version 2.0.1 of LundPlane		Dec 6 2021	Э	
MVATopTagger/	upped version for release testing		Aug 14 2013	୭	
Nsubjettiness/	Released version 2.2.5 of Nsubjettiness		Jun 6 2018	୭	
QCDAwarePlugin/	Released version 1.0.0 of QCDAwarePlugin		Oct 8 2015	୭	
RecursiveTools/	Released version 2.0.1 of RecursiveTools		Aug 21 2021	୭	
ScJet/	another attempt to get rid of copy constructor	warning	Aug 15 2013	୭	
SoftKiller/	added blank line to end of README to test a r	report of commit issues	Jun 16 2017	୭	
SubjetCounting/	Released version 1.0.1 of SubjetCounting	(gen) pam 11:44 fastj			
ValenciaPlugin/	Released version 2.0.2 of ValenciaPlugin	<pre>src/ClusterSequencePa</pre>			
VariableR/	Released version 1.2.1 of VariableR	<pre>src/ClusterSequence.cc: if (_jet_ src/ClusterSequence.cc: } else if src/JetDefinition.cc: if (jet_alg</pre>			
VertexJets/	Released version 0.1.0 of VertexJets				
WaveletTagger/	v1.0 uploaded	<pre>src/JetDefinition.cc:</pre>			t_algorit
graveyard/	moving the SoftDrop contrib to the graveyard	<pre>src/JetDefinition.cc:</pre>	if (jet	_algorith
		<pre>src/JetDefinition.cc: (gen) pam 11:45 fastj</pre>			ugin == 0 1014\$

- Lots of varied plugins have been written; the Template must be easy to understand.
- There are minimal branches in the code relating to plugins; the Strategy is encapsulating the variation.

```
p --include \*.cc "if.*plugin" src -R -I
    if (jet_def_in.jet_algorithm() == plugin_algorithm &&
rithm == plugin_algorithm) {
et_algorithm == plugin_algorithm
hm() == plugin_algorithm) {
thm() == plugin_algorithm) || (jet_algorithm() == undefined_jet_algorithm)){
nm() == plugin_algorithm) {
0){
```

- What is a pattern?
 - Scales in software and Conway's law
 - Gamma patterns by intent
- Developing fastjet plugins; an example of good pattern use in physics.
 - reuse
 - run time

Fastjet plugins; what other patterns would have worked here?

- Alternatives to template method pattern Alternatives to strategy pattern • Strong v.s. weakly typed languges

- Conclusions.

- Template method pattern for clean code
- Strategy pattern for altering behaviour at

Alternatives to Template Method pattern "Make variations on a theme without repetition."

- State pattern is not really for reusing code inside the object that changes, it's of making sure that no other code has to change when an object behaves differently during a run.
- Builder pattern is about reusing • code that defines steps or attribute values in different combinations. As we want new jet finding algorithms to write their own steps, this isn't so helpful.

Alternatives to Template Method pattern "Make variations on a theme without repetition."

- State pattern is not really for reusing code inside the object that changes, it's of making sure that no other code has to change when an object behaves differently during a run.
- Builder pattern is about reusing code that defines steps or attribute values in different combinations. As we want new jet finding algorithms to write their own steps, this isn't so helpful.

• Decorator pattern is for augmenting or overriding the behaviour of an object. It is a separate object, which carries a reference to the object it is decorating. Multiple decorators can sit in layers inside each other. Decorators can be applied at run time.

Alternatives to Strategy pattern "Allow for changes at runtime, without excessive branching."

- Abstract factory is for creating related families of objects. We just have the one algorithm to make.
- Prototype is for creating many objects from one object. We only need one clustering algorithm.

Alternatives to Strategy pattern "Allow for changes at runtime, without excessive branching."

- Abstract factory is for creating related families of objects. We just have the one algorithm to make.
- Prototype is for creating many objects from one object. We only need one clustering algorithm.

- Arguably, with duck typing, or a cast to a common base class, we could have had an object version of a strategy pattern. In a nominally (strongly) typed language, that would have meant giving Plugin and the default algorithms a common base class.
- Provided the language permits inferred types, we could also use a Factory method.

Alternatives to Strategy pattern

Static v.s. Dynamic

- When does type checking happen?
- Dynamically typed = you can have a type error at run time.
- Statically typed = classes are not objects at run time.

- Manifest v.s. Inferred
- Do you have to state the type of each variable?
- Even in languages that are mostly strongly typed, exceptions can be made, see `auto` in C++.

"Allow for changes at runtime, without excessive branching." Strong v.s Weakly typed

Nominal v.s. Structural

- What determines if two objects are compatible?
- Structural type conversions can be creative.

Aternatives to Strategy pattern

Static v.s. Dynamic

- When does type checking happen?
- Dynamically typed = you can have a type error at run time.
- Statically typed = classes are not objects at run time.

Manifest v.s. Inferred Nominal v.s. Structural ShadowCheetah \sim @shadowcheets Javascript is weird. ('b' + 'a' + + 'a' + 'a').toLowerCase()"banana"

1:30 PM · Aug 12, 2019 · TweetDeck

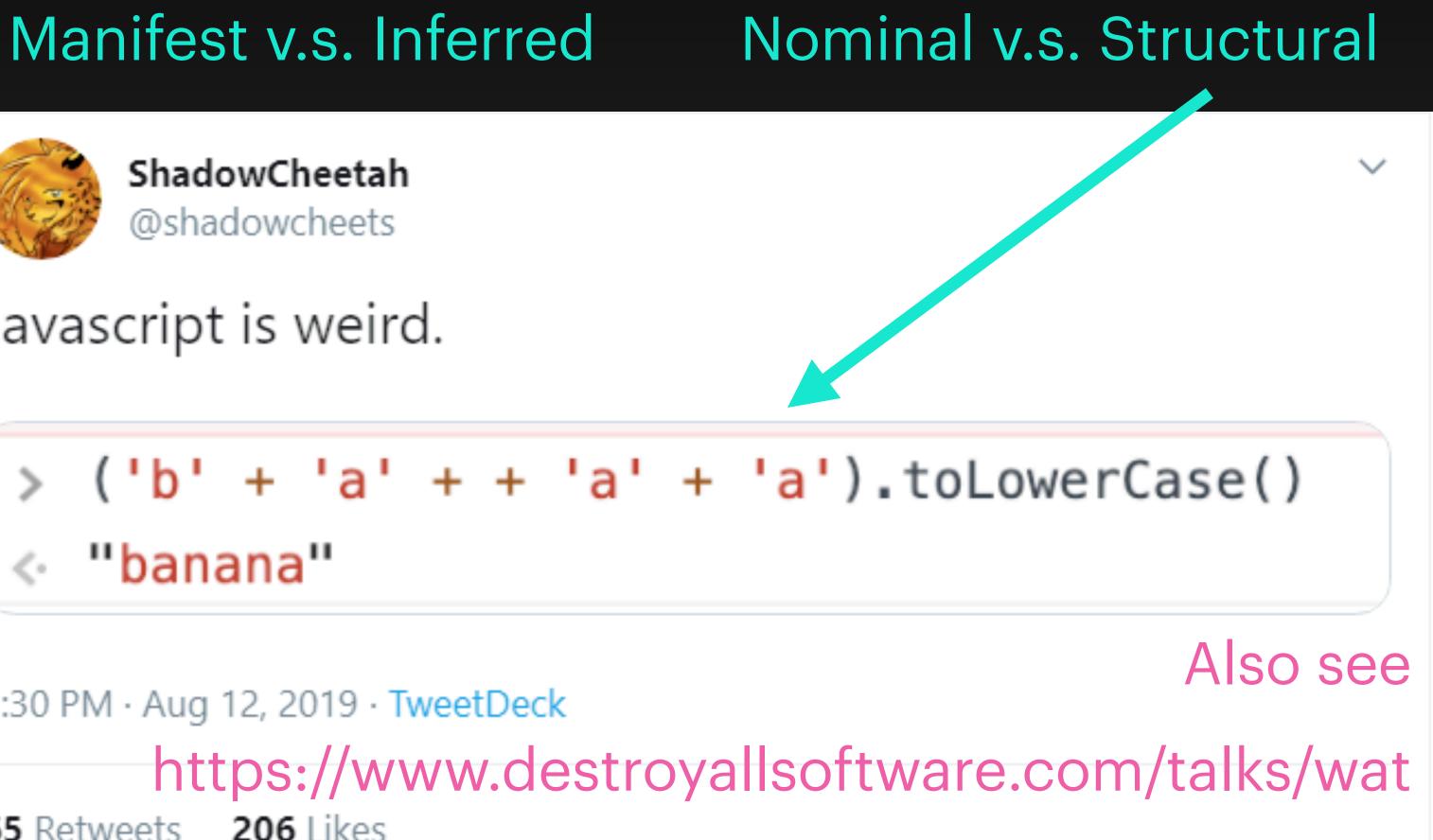
65 Retweets 206 Likes

"Allow for changes at runtime, without excessive branching." Strong v.s Weakly typed

Aternatives to Strategy pattern

Static v.s. Dynamic

- When does type checking happen?
- Dynamically typed = you can have a type error at run time.
- Statically typed = classes are not objects at run time.



Javascript is weird.

< "banana"

1:30 PM · Aug 12, 2019 · TweetDeck https://www.destroyallsoftware.com/talks/wat 65 Retweets 206 Likes

"Allow for changes at runtime, without excessive branching." Strong v.s Weakly typed

Conclusions

- Design patterns are abstract methods for achieving common aims in code.
- They offer the benefit of existing experience.
- Patterns are a common language that can help you understand other code and write more understandable code.
- Discussing the pros and cons of different design choices is easier when we have labels for the options.

 "Design Patterns: Elements of Reusable Object-Oriented Software" by E Gamma, R Helm, J Vlissides, R Johnson. (http:// www.javier8a.com/itc/bd1/ articulo.pdf)

 "Software Architecture Patterns" -M Richards. (https://get.oreilly.com/ rs/107-FMS-070/images/Software-Architecture-Patterns.pdf)

