
Design patterns for physics

Henry Day-Hall

A brief introduction to patterns and an example of
pattern use in Fastjet

Overview
• What is a pattern?

• Scales in software and Conway's law

• Gamma patterns by intent

• Developing fastjet plugins; an example of good
pattern use in physics.

• Template method pattern for clean code
reuse

• Strategy pattern for altering behaviour at run
time

• Fastjet plugins; what other patterns would have
worked here?

• Alternatives to template method pattern

• Alternatives to strategy pattern

• Strong v.s. weakly typed languges

• Conclusions.

What is a pattern?
• Scales in software and Conway's law

• Gamma patterns by intent

• Developing fastjet plugins; an example of
good pattern use in physics.

• Template method pattern for clean
code reuse

• Strategy pattern for altering
behaviour at run time

• Fastjet plugins; what other patterns
would have worked here?

• Alternatives to template method
pattern

• Alternatives to strategy pattern

• Strong v.s. weakly typed languges

• Conclusions.

What is a pattern?
A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

4

Classes,
functions

Modules,
Interactions

Program,
Entire work flow

What is a pattern?
A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

5

Classes,
functions

Modules,
Interactions

Program,
Entire work flow

Gamma patterns,
== Gang of Four (GoF) patterns

see "Design Patterns", 1977

Architecture patterns,
see "Software Architecture Patterns", 2015

• Make variations on a theme without repetition.

• Communicate flexibly between varying
interfaces.

• Communicate effectively in complex structures.

• Allow for changes at runtime, without excessive
branching.

• Preempt problems with intentional limits.

• Memory management for objects.

What is a pattern?
A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

6

What is a pattern?
A pattern is a good idea for designing software

• Make variations on a theme without repetition.

• Communicate flexibly between varying
interfaces.

• Communicate effectively in complex structures.

• Allow for changes at runtime, without excessive
branching.

• Preempt problems with intentional limits.

• Memory management for objects.

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

State
Template method

Builder
Decorator

7

What is a pattern?
A pattern is a good idea for designing software

• Make variations on a theme without repetition.

• Communicate flexibly between varying
interfaces.

• Communicate effectively in complex structures.

• Allow for changes at runtime, without excessive
branching.

• Preempt problems with intentional limits.

• Memory management for objects.

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Adaptor
Visitor

Mediator
Command
Composite

8

What is a pattern?
A pattern is a good idea for designing software

• Make variations on a theme without repetition.

• Communicate flexibly between varying
interfaces.

• Communicate effectively in complex structures.

• Allow for changes at runtime, without excessive
branching.

• Preempt problems with intentional limits.

• Memory management for objects.

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Bridge
Observer

Chain of responsibility
Command

Facade

9

What is a pattern?
A pattern is a good idea for designing software

• Make variations on a theme without repetition.

• Communicate flexibly between varying
interfaces.

• Communicate effectively in complex structures.

• Allow for changes at runtime, without excessive
branching.

• Preempt problems with intentional limits.

• Memory management for objects.

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Abstract factory
Factory method

Prototype
Strategy

10

What is a pattern?
A pattern is a good idea for designing software

• Make variations on a theme without repetition.

• Communicate flexibly between varying
interfaces.

• Communicate effectively in complex structures.

• Allow for changes at runtime, without excessive
branching.

• Preempt problems with intentional limits.

• Memory management for objects.

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Singleton
Proxy

11

What is a pattern?
A pattern is a good idea for designing software

• Make variations on a theme without repetition.

• Communicate flexibly between varying
interfaces.

• Communicate effectively in complex structures.

• Allow for changes at runtime, without excessive
branching.

• Preempt problems with intentional limits.

• Memory management for objects.

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Memento
Flyweight

12

Developing fastjet plugins; an example
of good pattern use in physics

• What is a pattern?

• Scales in software and Conway's law

• Gamma patterns by intent

• Template method pattern for clean
code reuse

• Strategy pattern for altering
behaviour at run time

• Fastjet plugins; what other patterns
would have worked here?

• Alternatives to template method
pattern

• Alternatives to strategy pattern

• Strong v.s. weakly typed languges

• Conclusions.

Fastjet - an algorithm for forming jets
(possibly quite fast)

• Originally written for the gen-kt
algorithms.

• Very well written, so it's the
default framework for jet
formation.

• Provides tools for defining new
clustering algorithms, with
minimal code repetition.

• Allows us to switch algorithm
without recompiling.

14

Fastjet - an algorithm for forming jets
(possibly quite fast)

• Originally written for the gen-kt
algorithms.

• Very well written, so it's the
default framework for jet
formation.

• Provides tools for defining new
clustering algorithms, with
minimal code repetition.

• Allows us to switch algorithm
without recompiling.

15

Defining new
clustering algorithms

• What we want; "Make
variations on a theme without
repetition."

• Theme = clustering particles
(with all their particle-like
properties) into jets (with all
their jet-like properties).

• Variation = deciding which
particles go in which jets.

16

Defining new
clustering algorithms

• What we want; "Make
variations on a theme without
repetition."

• Theme = clustering particles
(with all their particle-like
properties) into jets (with all
their jet-like properties).

• Variation = deciding which
particles go in which jets.

DRY = Don't Repeat Yourself

17

Defining new
clustering algorithms

• What is used; Template method
pattern

• "Define the skeleton of an
algorithm in an operation,
deferring some steps to
subclasses. Template Method
lets subclasses redefine certain
steps of an algorithm without
changing the algorithm's
structure." - Gamma 1977

18

Defining new
clustering algorithms

• Use existing tools for calculating
rapidity and phi.

• Use existing framework for tracking
available particles.

• Use existing framework for
recording jet history tree.

• May use existing code to determine
jet area.

• May use existing recombination
scheme.

19

Defining new
clustering algorithms

• Use existing tools for calculating
rapidity and phi.

• Use existing framework for tracking
available particles.

• Use existing framework for
recording jet history tree.

• May use existing code to determine
jet area.

• May use existing recombination
scheme.

20

Switch algorithms
without recompiling

• What we want; "Allow for
changes at runtime, without
excessive branching."

• Do want to be able to specify
algorithm when I launch
madanalysis, without having to
recompile anything.

• Don't want lots of `if`
statements, because branching
is error prone and slow.

21

Fastjet - an algorithm for forming jets
(possibly quite fast)

• Originally written for the gen-kt
algorithms.

• Very well written, so it's the
default framework for jet
formation.

• Provides tools for defining new
clustering algorithms, with
minimal code repetition.

• Allows us to switch algorithm
without recompiling.

22

Switch algorithms
without recompiling

• What is used; Strategy pattern

• "Define a family of algorithms,
encapsulate each one, and
make them interchangeable.
Strategy lets the algorithm vary
independently from clients that
use it." - Gamma 1977

23

Switch algorithms
without recompiling

• The family of algorithms
includes inbuilt gen-kt
algorithms, and plugin
algorithms defined by third
parties.

• These are passed to
`JetDefinition`.

• `JetDefinition` encapsulates the
algorithm, providing a standard
external interface.

24

Success?
Do the Template method and strategy patterns work well here?

• Lots of varied plugins have
been written; the Template
must be easy to understand.

• There are minimal branches in
the code relating to plugins;
the Strategy is encapsulating
the variation.

25

Fastjet plugins; what other
patterns would have worked here?

• What is a pattern?

• Scales in software and Conway's law

• Gamma patterns by intent

• Developing fastjet plugins; an example of good
pattern use in physics.

• Template method pattern for clean code
reuse

• Strategy pattern for altering behaviour at
run time

• Alternatives to template method pattern

• Alternatives to strategy pattern

• Strong v.s. weakly typed languges

• Conclusions.

Alternatives to Template Method
pattern

• State pattern is not really for
reusing code inside the object that
changes, it's of making sure that no
other code has to change when an
object behaves differently during a
run.

• Builder pattern is about reusing
code that defines steps or attribute
values in different combinations. As
we want new jet finding algorithms
to write their own steps, this isn't so
helpful.

"Make variations on a theme without repetition."

27

Alternatives to Template Method
pattern

• State pattern is not really for
reusing code inside the object that
changes, it's of making sure that no
other code has to change when an
object behaves differently during a
run.

• Builder pattern is about reusing
code that defines steps or attribute
values in different combinations. As
we want new jet finding algorithms
to write their own steps, this isn't so
helpful.

"Make variations on a theme without repetition."

• Decorator pattern is for
augmenting or overriding the
behaviour of an object. It is a
separate object, which
carries a reference to the
object it is decorating.
Multiple decorators can sit in
layers inside each other.
Decorators can be applied at
run time.

28

Alternatives to Strategy
pattern

• Abstract factory is for
creating related families of
objects. We just have the one
algorithm to make.

• Prototype is for creating many
objects from one object. We
only need one clustering
algorithm.

"Allow for changes at runtime, without excessive branching."

29

Alternatives to Strategy
pattern

• Abstract factory is for
creating related families of
objects. We just have the one
algorithm to make.

• Prototype is for creating many
objects from one object. We
only need one clustering
algorithm.

"Allow for changes at runtime, without excessive branching."

• Arguably, with duck typing, or a
cast to a common base class, we
could have had an object version
of a strategy pattern. In a
nominally (strongly) typed
language, that would have meant
giving Plugin and the default
algorithms a common base class.

• Provided the language permits
inferred types, we could also use
a Factory method.

30

Alternatives to Strategy
pattern

• When does type
checking happen?

• Dynamically typed =
you can have a type
error at run time.

• Statically typed =
classes are not objects
at run time.

"Allow for changes at runtime, without excessive branching."

• Do you have to state
the type of each
variable?

• Even in languages that
are mostly strongly
typed, exceptions can
be made, see `auto` in
c++.

• What determines if
two objects are
compatible?

• Structural type
conversions can be
creative.

Strong v.s Weakly typed

Static v.s. Dynamic Manifest v.s. Inferred Nominal v.s. Structural

31

Alternatives to Strategy
pattern

• When does type
checking happen?

• Dynamically typed =
you can have a type
error at run time.

• Statically typed =
classes are not objects
at run time.

"Allow for changes at runtime, without excessive branching."

• Do you have to state
the type of each
variable?

• Even in languages that
are mostly strongly
typed, exceptions can
be made, see `auto` in
c++.

• What determines if
two objects are
compatible?

• Structural type
conversions can be
creative.

Strong v.s Weakly typed

Static v.s. Dynamic Manifest v.s. Inferred Nominal v.s. Structural

32

Alternatives to Strategy
pattern

• When does type
checking happen?

• Dynamically typed =
you can have a type
error at run time.

• Statically typed =
classes are not objects
at run time.

"Allow for changes at runtime, without excessive branching."

• Do you have to state
the type of each
variable?

• Even in languages that
are mostly strongly
typed, exceptions can
be made, see `auto` in
c++.

• What determines if
two objects are
compatible?

• Structural type
conversions can be
creative.

Strong v.s Weakly typed

Static v.s. Dynamic Manifest v.s. Inferred Nominal v.s. Structural

Also see

https://www.destroyallsoftware.com/talks/wat

33

Conclusions
• Design patterns are abstract

methods for achieving common
aims in code.

• They offer the benefit of existing
experience.

• Patterns are a common language
that can help you understand other
code and write more
understandable code.

• Discussing the pros and cons of
different design choices is easier
when we have labels for the options.

• "Design Patterns: Elements of
Reusable Object-Oriented
Software" by E Gamma, R Helm, J
Vlissides, R Johnson. (http://
www.javier8a.com/itc/bd1/
articulo.pdf)

• "Software Architecture Patterns" -
M Richards. (https://get.oreilly.com/
rs/107-FMS-070/images/Software-
Architecture-Patterns.pdf)

