Design patterns for physics

A brief introduction to patterns and an example of
pattern use In Fastjet

Henry Day-Hall

Overview

What is a pattern?

« Scales in software and Conway's law
- Gamma patterns by intent

Developing fastjet plugins; an example of good
pattern use in physics.

- Template method pattern for clean code
reuse

» Strategy pattern for altering behaviour at run
time

Fastjet plugins; what other patterns would have
worked here?

» Alternatives to template method pattern
 Alternatives to strategy pattern
» Strong v.s. weakly typed languges

Conclusions.

-~

f

-
-
.
»
»
-
-
> .
L ~

.

. - &2
y - -~ - e
v » - L& - -
® e e h
- » P
.
5 3 3
03w 3 ;
-" i = 3 &
>
» . ;
« 2 . d - .
» > 7 .
: x :
> -
7
! : -
. - » - -
. ; L
: A / :
. 5 : G
3 . 2 SRR
Besi 2 A % :
< ’
: ko
;] ;
. 7
" 3 .
: 2 g
: :
:
SRR : \ : %
¢ 3)
‘ « 5 c
- L3 s - "
S ¥ ‘
. # - ! 7
- Lo
. ; ‘ .
% : :
. -
. X : .
a
¢ S
A < _
3
. ; ! :
< X >
;
2 3 - P -
G : %
3 :

= Scales in software and.Conway's law -

- -_Gé.mma'patt,erns by-ih’tenf.t'j -

Devéfl’fbping féStjét plugins; anexa
_ - good pattern use in p.hys_ics,._-;.-"j

+ Template method patters
r:;;COdeTeuSe.;.;.'ii %

- Strategy p

pattern 4= "=
. Altgrﬁétives tO”stra"tegy pattern

. Strong v.s:weakly typed languges

« Conclusions.

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Gamma patterns,
== Gang of Four (GoF) patterns
see "Design Patterns"£197

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Make variations on a theme without repetition.

Communicate flexibly between varying
interfaces.

Communicate effectively in complex structures.

Allow for changes at runtime, without excessive
branching.

Preempt problems with intentional limits.

Memory management for objects.

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Make variations on a theme without repetition.

Communicate flexibly between varying

interfaces. State

. . . Template method
Communicate effectively in complex structures. ,

| | | Builder

Allow for changes at runtime, without excessive Decorator

branching.
Preempt problems with intentional limits.

Memory management for objects.

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Make variations on a theme without repetition.

Communicate flexibly between varying Adaptor
interfaces. \Visitor
Communicate effectively in complex structures. Mediator
Allow for changes at runtime, without excessive Command
branching. Composite

Preempt problems with intentional limits.

Memory management for objects.

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Make variations on a theme without repetition.

Communicate flexibly between varying Bridge
interfaces. Observer
Communicate effectively in complex structures. Chain of responsibility
Allow for changes at runtime, without excessive Command
branching. Facade

Preempt problems with intentional limits.

Memory management for objects.

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Make variations on a theme without repetition.

Communicate flexibly between varying

. . . Factory method
Communicate effectively in complex structures.

Prototype

Allow for changes at runtime, without excessive Strategy

branching.
Preempt problems with intentional limits.

Memory management for objects.

10

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Make variations on a theme without repetition.

Communicate flexibly between varying

interfaces.
Singleton

Communicate effectively in complex structures.
Proxy

Allow for changes at runtime, without excessive
branching.

Preempt problems with intentional limits.

Memory management for objects.

i

What is a pattern?

A pattern is a good idea for designing software

It should be easy to conceptualise, it should be easy to identify in code, and it should keep code
flexible.

Make variations on a theme without repetition.

Communicate flexibly between varying

interfaces.
Memento

Communicate effectively in complex structures. ,
Flyweight

Allow for changes at runtime, without excessive
branching.

Preempt problems with intentional limits.

Memory management for objects.

12

i e SR
¢ What is';a pattern?
. Scales | in software and Conway's Iaw

3 Gamma patterns by |ntent

Developlng fastjet pluglns an example
of good pattern use in thSICS

o Template method pattern for clean
code reuse

 .Strategy pattern for alterin
. b‘_ehaviour at run time %

- - ~ + Fastjet plugins; what other
' ' Would have worked he«e’?'

o AIternattves to template method
pattern

Alternafvé% to strategy pattern

Strong vis. weakly typed languges

« Conclusions:

Fastjet - ai

POS
 Originally written for the gen-kt - |
algorithms. fg
: - 10
» Very well written, so it's the
default framework for jet
formation. ;

» Provides tools for defining new
clustering algorithms, with
minimal code repetition.

R

b\ nl
i “‘l"‘“‘

" AR

AARW A
A o T L LA -
ANERE e wuwmunAS R

0 2 4

» Allows us to switch algorithm .

without recompiling.

14

astjet - an
possi

. Originally written for the gen-kt - |
algorithms. fg
. " 10
» Very well written, so it's the
default framework for jet
formation. ;

» Provides tools for defining new
clustering algorithms, with
minimal code repetition.

am___ AWE
apua
“%‘l“‘

" AR

AARW A
A o T L LA -
ANERE e wuwmunAS R

2 4

0
y

» Allows us to switch algorithm
without recompiling.

15

Defining new .
clustering algorithms

« What we want: "Make
variations on a theme without
repetition.”

- Theme = clustering particles
(with all their particle-like
properties) into jets (with all
their jet-like properties).

» Variation = deciding which
particles go in which jets.

Defining new .
clustering algorithms

- What we want; "Make
variations on a theme without . L

- Theme = clustering particles
(with all their particle-like
properties) into jets (with all
their jet-like properties).

» Variation = deciding which
particles go in which jets.

I i LT
3 R AR A
- i S B

/// @ingroup advanced_usage

® ® v
/// \class Plugin
e In I n new ' /// a class that allows a user to introduce their own "plugin" jet
. /// findel}
/// Note that all the plugins provided with FastJet are derived from

clustering algorithms * 433 -

public:
/// return a textual description of the jet-definition implemented
/// in this plugin
virtual std::string description() const = 0;

/// given a ClusterSequence that has been filled up with initial

[J
/// particles, the following function should fill up the rest of the
([
= What IS used, Tel I lplate I I IethOd /// ClusterSequence, using the following member functions of
/// ClusterSequence:
/17 - plugin_do_ij_recombination(...)

pa tt e r n /17 - plugin_do_iB_recombination(...)

virtual void run_clustering(ClusterSequence &) const = 08;

virtual double R() const = 9;

o "Define the Skeleton Of an . ‘ /// return true if there is specific support for the measurement

. /// of passive areas, in the sense that areas determined from all
/// particles below the ghost separation scale will be a passive

algorithm in an operation, . /07 G T80 v e (e ool 6y S (G
deferring some steps to 707 (e G0 T CCTertiien Conf G pocin o (U e

/// a non const, so related internal info must be stored as a mutable)
virtual void set_ghost_separation_scale(double scale) const;

SUbCIasseS. Template MethOd virtual double ghost_separation_scale() const {return 0.0;}

/// if this returns false then a warning will be given

lets subclasses redefine certain | e oL

virtual bool exclusive_sequence_meaningful() const {return false;}

Steps Of an algorithm WithOUt /// returns true if the plugin implements an algorithm intended

» /// for use on a spherical geometry (e.g. e+e- algorithms, as
/// opposed to most pp algorithms, which use a cylindrical,

Ll o , ePaTe _ . .
changing the algorithm's B

/// a destructor to be replaced if necessary in derived classes...

SthCture," _ Gamma 1977 < virtual ~Plugin() {};

g

Defining new
clustering algorithms

» Use existing tools for calculating
rapidity and phi.

» Use existing framework for tracking
available particles.

» Use existing framework for
recording jet history tree.

« May use existing code to determine
jet area.

» May use existing recombination
scheme.

//

/ @ingroup advanced_usage

/ \class Plugin

/ a class that allows a user to introduce their own "plugin" jet
/ findelj

/ Note that all the plugins provided with FastJet are derived from
/ this class

class Plugin{
public:

/// return a textual description of the jet-definition implemented
/// in this plugin
virtual std::string description() const = 0;

/// given a ClusterSequence that has been filled up with initial

/// particles, the following function should fill up the rest of the
/// ClusterSequence, using the following member functions of

/// ClusterSequence:

/17 - plugin_do_ij_recombination(...)

/17 - plugin_do_iB_recombination(...)

virtual void run_clustering(ClusterSequence &) const = @8;

virtual double R() const = 0;

/// return true if there is specific support for the measurement
/// of passive areas, in the sense that areas determined from all
/// particles below the ghost separation scale will be a passive
/// area. [If you don't understand this, ignore it!]

virtual bool supports_ghosted_passive_areas() const {return false;}

/// set the ghost separation scale for passive area determinations

/// in future runs (strictly speaking that makes the routine

/// a non const, so related internal info must be stored as a mutable)
virtual void set_ghost_separation_scale(double scale) const;

virtual double ghost_separation_scale() const {return 0.0;}

/// if this returns false then a warning will be given

/// whenever the user requests "exclusive" jets from the

/// cluster sequence

virtual bool exclusive_sequence_meaningful() const {return false;}

/// returns true if the plugin implements an algorithm intended
/// for use on a spherical geometry (e.g. e+e- algorithms, as
/// opposed to most pp algorithms, which use a cylindrical,

/// rapidity-phi geometry).

virtual bool is_spherical() const {return false;}

/// a destructor to be replaced if necessary in derived classes...
virtual ~Plugin() {};

/// @ingroup advanced_usage

® ® :
/// \class Plugin
e Inln new ' /// a class that allows a user to introduce their own "plugin" jet
- /// findell
/// Note that all the plugins provided with FastJet are derived from

® ®
" /// this class
class Plugin{
: public:
. /// return a textual description of the jet-definition implemented f

/// in this plugin
virtual std::string description() const = 9;

. . . ; /// given a ClusterSequence that has been filled up with initial .
/// particles, the following function should fill up the rest of the
° Use eXIStIng tOO|S for CalCUlatlng /// ClusterSequence, using the following member functions of
. . . /// ClusterSequence:
1/ - plugin_do_ij_recombination(...)
ra p I d Ity a n d p h I . /// - plugin_do_iB_recombination(...)

virtual void run_clustering(ClusterSequence &) const = @8;

virtual double R() const = 9;

) Use eXiSting frameWOrk for traCking /// return true if there is specific support for the measurement
avallable pa rt|C|eS, // This acts like any fastjet lugin since it implements run_clustering

class VariableRPlugin : public JetDefinition::Plugin {

« Use existing framework for e
reCOrdlng Jet h|StOry tree. /// Type of clustering

///
/// Since version 1.2.0 of VariableR, the clustering 1s treated as

¢ May USG eX|St|ng COde to determlne /// a generalised-kt algorithm and the previous "ClusterType"

virtua DOOL excluslve_sequence_meaningTtu const {return fTalse;

Jet area. /// returns true if the plugin implements an algorithm intended
» /// for use on a spherical geometry (e.g. e+e- algorithms, as

/// opposed to most pp algorithms, which use a cylindrical,
/// rapidity-phi geometry).

o |\/|ay use existing recombination Y it Bk S OB e G e G

/// a destructor to be replaced if necessary in derived classes...

r] virtual ~Plugin() {};
scheme. N

Switch algorithms
without recompiling

- What we want; "Allow for
changes at runtime, without
excessive branching.”

- Do want to be able to specify
algorithm when | launch
madanalysis, without having to
recompile anything.

- Don't want lots of if ‘
statements, because branching
Is error prone and slow.

Fastjet - a

POS
4’/
 Originally written for the gen-kt - |
algorithms. fg
: - 10
» Very well written, so it's the
default framework for jet
formation. ;

» Provides tools for defining new
clustering algorithms, with
minimal code repetition.

R

b\ nl
i “‘l"‘“‘

% aapsaned —
A o PEERARRRURETr
ANERE e wuwmunAS R

0 2 4

» Allows us to switch algorithm .

without recompiling.

22

/// \class HOTVR
///

‘ N " ®
Itc a Orlt ms ; class HOTVR : public JetDefinition::Plugin {
. /// "Semi-classical approach to sequential recombination algorithms

/// for jet clustering", arXiv:1304.1025 (2013).

o OB O
Wlt out recom I In N class Sclet : public JetDefinition::Plugin {
// This acts like any fastjet plugin since it implements run_clustering

class VariableRPlugin : public JetDefinition::Plugin {

public:
/// Type of clustering

- What is used; Strategy pattern '

/// Since version 1.2.0 of VariableR, the clustering is treated as

/// a generalised-kt algorithm and the previous "ClusterType"

» "Define a family of algorithms, ,
encapsulate each one, and Gouste tho - 2000.0;

double min_r = 0.0;

make them interchangeable. Y o coule macr - 2.0

Strategy IetS the algorithm Vary ' VariableRPlugin lvjet_pluginAKT(rho, min_r, max_r, VariableRPlugin::AKTLIKE); ' :
. . fastjet::JetDefinition jet_defAKT(&Llvjet_pluginAKT); g
independently from clients that ' o |

use it - Gamma 1977 .. S

45 JetDefinition::JetDefinition(JetAlgorithmAjét_algorithm_in,

46 double R_in,
» 47 RecombinationScheme recomb_scheme_in,

48 Strategy strategy_in,
49 int nparameters)
50 _jet_algorithm(jet_algorithm_in), _Rparam(R_in), _strategy(strategy_in) {
51

-

.

/// \class HOTVR
///

‘ N " ®
Itc a Orlt ms ; class HOTVR : public JetDefinition::Plugin {
. /// "Semi-classical approach to sequential recombination algorithms

/// for jet clustering", arXiv:1304.1025 (2013).

class VariableRPlugin : public JetDefinition::Plugin {

o OB O
Wlt out recom I In N class Sclet : public JetDefinition::Plugin {
) // This acts like any fastjet plugin since it implements run_clustering

public:
/// Type of clustering

» The family of algorithms '

/// Since version 1.2.0 of VariableR, the clustering is treated as
iﬂCl udeS in built gen_kt /// a generalised-kt algorithm and the previous "ClusterType"
algorltth' and plugln // defining parameters

. . . double rho = 2000.0;
algorithms defined by third

double max_r = 2.0;

pa rties. \ double ptmin = 5.0;

VariableRPlugin lvjet_pluginAKT(rho, min_r, max_r, VariableRPlugin::AKTLIKE);

. These are passed tO fastjet::JetDefinitin jet_defAKT(&lvjet_plu?inAKT);
“JetDetfinition . -

45 JetDefinition::JetDefinition(JetAlgorithm jet_algorithm_in,
46 double R_in,

~) JetDefi n ition) enca psu |ateS the » 47 RecombinationScheme recomb_scheme_in,

Strategy strategy_in,

48
. S —> 49 int nparameters) :
a |g O rlth m / p rOVId I n g a Sta n d a rd 50 _jet_algorithm(jet_algorithm_in), _Rparam(R_in), _strategy(strategy_in) {

51

external interface. 4 :

Do the Template

contribs

CartesianJet/
Centauro/

CentauroPlugin/

ClusteringVetoPlugin/

ConstituentSubtractor/
EnergyCorrelator/
FlavorCone/
GenericSubtractor/
HOTVR/
JetCleanser/
JetFFMoments/
JetsWithoutJets/
LundPlane/
MVATopTagger/
Nsubjettiness/
QCDAwarePlugin/
RecursiveTools/

Sclet/

SoftKiller/
SubjetCounting/
ValenciaPlugin/
VariableR/
VertexJets/
WaveletTagger/

graveyard/

Success?

method and strategy patterns work well here?

Adding user index, safer recomb scheme for CartesianJet Jun 30 2016

 Lots of varied plugins have
been written; the Template
must be easy to understand.

Released version 1.0.0 of Centauro Aug 4 2020

Creating the basic svn structure for contrib CentauroPlugin Aug 3 2020
Released version 1.0.0 of ClusteringVetoPlugin May 4 2015
Released version 1.4.5 of ConstituentSubtractor Feb 23 2020
Released version 1.3.1 of EnergyCorrelator Feb 10 2018
Released version 1.0.0 of FlavorCone Sep 7 2017
fixed typo in comment Mar 30 2016

Speed improvements due to N2Tiled and N2Plain clustering, available in FJ3.2... Sep 29 2016

« There are minimal branches in
the code relating to plugins;
the Strategy is encapsulating
the variation.

Released version 1.0.1 of JetCleanser Aug 16 2014

Released version 1.0.0 of JetFFMoments Feb 7 2013

Released version 1.0.0 of JetsWithoutJets Feb 22 2014

Released version 2.0.1 of LundPlane Dec 6 2021

upped version for release testing Aug 14 2013

Released version 2.2.5 of Nsubjettiness Jun 6 2018
Released version 1.0.0 of QCDAwarePlugin Oct 8 2015
Released version 2.0.1 of RecursiveTools Aug 21 2021

another attempt to get rid of copy constructor warning Aug 15 2013

O O ¥ O YU YU YO YU U YV v B v v v v v v v

added blank line to end of README to test a report of commit issues Jun 16 2017

(gen) | | | $ grep --include *.cc "if.xplugin" src -R -I

src/ClusterSequencePassiveArea.cc: } else if (jet_def_in.jet_algorithm() == plugin_algorithm &&

src/ClusterSequence.cc: 1if (_jet_algorithm == plugin_algorithm) {

src/ClusterSequence.cc: } else if (_jet_algorithm == plugin_algorithm

src/JetDefinition.cc: if (jet_algorithm() plugin_algorithm) {

src/JetDefinition.cc: if ((jet_algorithm() == plugin_algorithm) ||

Rl el src/JetDefinition.cc: 1if (jet_algorithm() == plugin_algorithm) {
src/JetDefinition.cc: if (_plugin == 0){

(gen) pan| | |10148 |

Released version 1.0.1 of SubjetCounting
Released version 2.0.2 of ValenciaPlugin
Released version 1.2.1 of VariableR

Released version 0.1.0 of VertexJets

v1.0 uploaded

(jet_algorithm() == undefined_jet_algorithm)){

25

i o S

. What is & pat.t.ern? - '
o Sca'les in software and Conway's law
. Gamma pattems by intent .

. Developlng fastjet pluglns an example of good
pattern use in physics. '

o Template method pattern for cIean Code
reuse '

» Strategy pattern for aIterlng behaviour at
run time: |

Fastjet plugins; what other
patterns WOu Id have worked here?

e AItematlves to tempIate'method pattern. -

e AIternat1veeto strategy pattem

. Strer‘rg Wk s Weakly typed Ianguges
”fﬁf!ﬁ "

Alternatives to Template Metl
pattern

"Make variations on a theme without repetition.”

 State pattern is not really for
reusing code inside the object that
changes, it's of making sure that no
other code has to change when an
object behaves differently during a
run.

- Builder pattern is about reusing
code that defines steps or attribute
values in different combinations. As
we want new jet finding algorithms
to write their own steps, this isn't so
helpful.

27

Alternatives to Template Metl
pattern

"Make variations on a theme without repetition.”

- State pattern is not really for - Decorator pattern is for
reusing coce inside the ©bject that augmenting or overriding the

changecs, it's of makirg sure that no . . .
other code has tochange when an behaviour of an object. Itis a

object behaves ditferentiy during a separate object, which
run. carries a reference to the
. Builder patici is 2bout reusing object it is decorating.
code that cefines steps or attribute Multiple decorators can sit in
Values N different combinations. As |ayers |ns|de each Other

we Wgnt neyv;et finding alg.orlth'ms Decorators can be applied at
to wiiie their own steps, thisisn't so

helpful run time.

28

Alternatives to Strategy

pattern .o for changes at runtime, without excessive branching."

- Abstract factory is for
creating related families of
objects. We just have the one
algorithm to make.

 Prototype is for creating many
objects from one object. We
only need one clustering
algorithm.

YAS

Alternatives to Strat

pattern .o for changes at runtime, without excessive branching."
. Abstract factory is for » Arguably, with duck typing, or a
creatilic related familics of cast to a common base class, we

could have had an object version
of a strategy pattern. In a
nominally (strongly) typed
language, that would have meant

objects. We just have the one
algorithin (o make.
 Prototypc & 101 creating many

objects from one object. We giving Plugin and the default
only necc one clusiering algorithms a common base class.
algoritnim.

» Provided the language permits
inferred types, we could also use
a Factory method.

30

Alternatives to Stre

pattern "Allow for changes at runtime, without excessive branching.”
Strong v.s Weakly typed
Static v.s. Dynamic Manifest v.s. Inferred Nominal v.s. Structural
» When does type - Do you have to state - What determines if
checking happen? the type of each two objects are
« Dynamically typed = variable? compatible?
you can have a type » Even in languages that . Structural type
error at run time. are mostly strongly conversions can be
. Statically typed = typed, exceptions can creative.

classes are not objects & made, see ‘auto in
at run time. CH.

31

Alternati

N
"Allow for changes at runtime, without excessive branching."

Strong v.s Weakly typed

Static v.s. Dynamic Manifest v.s. Inferred Nominal v.s. Structural

« When does type
checking happen?
« Dynamically typed = Javascript is weird.
you can have a type
error at run time. ('b' + 'a').toLowerCase()
. Statically typed = "banana"

classes are not objects
at run time.

Alternati

P "Allow for changes at runtime, without excessive branching."
Strong v.s Weakly typed
Static v.s. Dynamic Manifest v.s. Inferred Nominal v.s. Structural
» When does type & ® shadowCheetah
checking happen? &~
« Dynamically typed = Javascript is weird.
you can have a type
error at run time. ('b" + 'a').toLowerCase()
. Statically typed = "banana"

classes are not objects
at run time.

Conclusions

Design patterns are abstract
methods for achieving common
aims in code.

They offer the benetfit of existing
experience.

Patterns are a common language
that can help you understand other
code and write more
understandable code.

Discussing the pros and cons of
different design choices is easier

when we have labels for the options.

- Software" by E Gamma, R Helm
'V|ISSIdeS RJohnson (http //

"Design Patterns: Elemerht‘s;-cjf "
Reusable Object-Oriented

WWWJaV|er8a com/ltc/bd1/ ‘ '
articulo.pdf) My i
"Software Architecture Patterns" -
M RichardsZ(https://get.oreilly.com/
rs/107-EMS-070/images/Software-

Architecture-Patterns.pdf)

