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Cosmic rays
• Charged particles, mostly light ionized nuclei (protons) of galactic or extragalactic origin with various energies

(from 108 to more than 1020 eV)

• Ultra high-energy cosmic rays (UHECRs) are defined as those with energies above 1018 eV
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The flux of cosmic rays
• E-𝛾, the power law, with factor 𝛾 ∼ 3 changing with 

the higlighted features:
• The knee steepening around 1015.5 eV, maximum 

proton energy accelerated in our galaxy
• The second knee 1017 eV, maximum for heavy nuclei 

within our galaxy
• The ankle flattening around 1018.7 eV – possibly 

maximum proton energy in extragalactic sources

Above 4 𝗑 1019 eV - strong suppression, possibly due to 
propagation effects or to maximum acceleration
potential of extragalactic sources



The Pierre Auger Observatory
• A hybrid detector that combines multiple detection techniques to measure air showers, the main detectors are the Surface

Detector (SD) and the Fluorescence Detector (FD)

• The SD is an array of 1660 water Cherenkov detectors (WCD) covering area of 3000 km2

• The FD is composed of 27 fluorescence telescopes, installed in 4 sites that overlook the SD, detecting the
fluorescence light emitted by particles as the shower develops in the atmosphere – directly observes Xmax (disadvantage is a 
low duty cycle ~ 12%)
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The surface detector
• Three PMTs record the Cherenkov light generated by relativistic charged particles traversing the

water

• The signal is provided in two outputs, one from the anode (low gain) and the other from the last 
dynode, multiplied by a factor of 32 (high gain)

• The amplified signal is used if the station is far away from the shower core. In the case that the
SD station is close to the core, this signal can be saturated => anode output is used
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Why muons?

• Mass composition: more muons from heavier nuclei

• Hadronic interactions: modern models do not describe well the muon shower component

Why neural networks?

SD trace – too difficult to disentangle EM and muons -> machine learning methods could find patterns
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Motivation

• 2021 published paper "Extraction of the
Muon Signals Recorded by the Surface
Detector of the Pierre Auger Observatory
using Recurrent Neural Networks"

• Estimating total muon signal by 
integration of the predicted muon trace



Including high gain saturated stations
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Events with energies 10 < E < 15 EeV and zenith 1.00 < sec θ < 1.45, (a) before
Ronald's correction, (b) after, Internal Auger notes - GAP2017_005.

• Negative signal fractions are small now: no particular
reasons for excluding HG-saturated stations



The FeedForward Neural Network
• Input variables:

MC energy, MC zenith angle
station: total signal, distance from the core, azimuth
trace: length, area over peak, signal rise and fall times

• The output is total muon signal

• Software used: Keras, Tensorflow

Margita Majerčáková 8

• Trained on only iron, only proton, mix 
50%, final = mix 25% (p, He, O, Fe)

• Best performance: training on mixed
compositions

• Biases depend on mass
• Difference proton-iron is up to 13%

Biases on the reconstructed muon signal



Extraction of muon traces
• Using Recurrent Neural Network to extract the muon trace

• Input variables:
zenith angle
station: distance to the core, total trace (first 200 bins)

• Software used: PyTorch 1.11.0

Margita Majerčáková 9

• Dataset:

• Training: 420000, validation: 20000 
traces, test: 10000 for each primary

• Epochs: 200, batch size: 512

Output is the muon component for each of
the first 200 trace bins



Relative biases
• Biases are slightly worse for LG stations which are closer to the shower core and have a larger EM 

contamination

• Difference in biases between proton and iron within 5% (HG) and 9% (LG)
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Examples of extracted muon traces



Relative biases
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• Biases are larger for smaller core distances and smaller for higher energies



Are the results of neural network independent of the hadronic interaction model?

• NN trained on Sibyll 2.3c also tested on a different model (EPOS-LHC): similar performance
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Risetimes
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• The biases are higher for more vertical events and are decreasing for the larger values of risetime

• The rise time t1/2 - the length of a time slot during which the signal increases from 10% to 50% of 
its amplitude

• The muon trace has a faster rise time 
than the electromagnetic one -> electrons 
can undergo multiple scattering in the 
atmosphere and therefore be more 
dispersed in time

• The muons produced at the beginning of 
the shower development arrive earlier 
than those produced later



Application to data
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• Muon signal vs the distance to the shower core, 
predicted value for data compared to simulations

• Total and muon signal risetimes vs distance to the
shower core, for more inclined and more vertical
showers



Conclusions
• Two types of neural networks were used to extract muon signal from Auger SD stations– FeedForward and 

Recurrent

• The largest biases on muon signal come from the stations at small distances to the shower core, dominated
by an electromagnetic component producing smooth traces

• NN trained on Sibyll 2.3c was also tested on a different model (EPOS-LHC), no change in the muon signal
biases was found

• Muon signal and risetime can be extracted with a good accuracy for a certain ranges of distances to the
shower core and zenith angles

• The preliminary data application suggests the muon deficit in simulations(well-known problem)
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Future plans

• Optimization of the network performances: architecture, input variables, application phase space

• Study of systematic uncertainties

• Application to the Auger and Auger upgrade (AugerPrime) data with the aim of publishing of the results on 
behalf of the Collaboration

• ...



Thank you for your attention!
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Published results Thesis results



Backup
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FeedForward neural network
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Artificial Neural Networks



Histograms of biases (FeedForward)

Margita Majerčáková 23

High Gain – Non saturated stations
Low Gain – HG saturated stations



Predicted and true muon signal correlation
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Extraction of muon traces with RNN
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Relative biases (EPOS-LHC)
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Architecture of the RNN



The risetimes for HG and LG channels



The fractions of muon signal as a function of the distance of
the SD station to the shower core for more inclined and more 
vertical showers

• For vertical showers and LG stations close to the core the muon fraction is the smallest


