

Measurements of open heavy flavor hadrons at RHIC and the LHC

Jan Vanek

Nuclear Physics Institute, Czech Academy of Sciences

Winter School 2022

17.06.2022

OUTLINE

- Open heavy-flavor hadrons
- Physics motivation
- Reconstruction methods
- Charm and bottom quark production modification in heavy-ion collisions
- Collective flow of heavy quarks
- Open heavy-flavor hadrochemistry
- Open-charm mesons as a probe of initial state of heavy-ion collisions

17.06.202

OPEN HEAVY-FLAVOR HADRONS

Open-charm hadrons

- Mesons one charm (anti-)quark and lighter antiquark (quark)
- Baryons one or more charm quarks

Hadron	$M_{ m inv} [{ m MeV}/c^2]$	<i>cτ</i> [μm]
$\mathrm{D}^{+}\left(car{u} ight)$	1869.66 ± 0.05	311.8 ± 2.1
${\sf D}^0\left(car{d} ight)$	1864.84 ± 0.05	122.9 ± 0.4
$D^+_{s}(c\bar{s})$	1968.35 ± 0.07	149.9 ± 2.1
Λ_c^+ (udc)	2286.46 ± 0.14	59.9 ± 1.8
Ξ_c^0 (dsc)	2470.44 ± 0.28	45.5 ± 0.7

Open-bottom hadrons

- Mesons one bottom (anti-)quark and lighter antiquark (quark)
- Baryons one or more bottom quarks

Hadron	$M_{ m inv} [{ m MeV}/c^2]$	<i>cτ</i> [μm]
$B^+(u\overline{b})$	5279.34 ± 0.12	491.1 ± 1.2
$\mathbf{B}^{0}\left(d\overline{b} ight)$	5279.66 ± 0.12	455.4 ± 1.2
$\mathbf{B}_{s}^{0}\left(s\overline{b} ight)$	5366.92 ± 0.10	455.7 ± 1.5
$\Lambda_b^0 \ (udb)$	5619.60 ± 0.17	441.0 ± 2.7

PHYSICS MOTIVATION

- Quark-Gluon Plasma (QGP) is an extreme state of matter where quarks and gluons are no longer trapped inside colorless hadrons
- QGP can be studied using relativistic heavy-ion collisions
- At RHIC energies, charm and bottom quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium

PHYSICS MOTIVATION

- Production of open-charm hadrons in p+p collisions is reasonably well understood
 Spoiler alert there will be a plot twist…
- Good agreement of models with open-charm spectra measured in p+p collisions

SEMI-LEPTONIC DECAYS OF OPEN HEAVY-FLAVOR HADRONS

- Weak decays to hadrons and $l-v_1$ pair
 - Heavy flavor (HF) electrons, non-photonic electrons (NPE)
- Method:
 - Identification of inclusive electrons
 - Fraction of electrons from other sources (decay of π⁰, conversion electrons) estimated from simulation

• Pros:

- Detection and identification of electrons relatively easy
- Possible even without precise tracking
 - Only combined HF electrons from both c and b-hadrons
- Reasonably high branching ratios
- Cons:
 - High background levels
 - Distinguishing decays of c and b-hadrons challenging
 - Does not provide full information about mother kinematics

Hadron*	Decay channel	<i>BR</i> [%]
D ⁺	e^+ semileptonic	16.07 ± 0.30
D^0	e^+ anything	6.49 ± 0.11
D_s^+	e^+ semileptonic	6.33 ± 0.15
Λ_c^+	$\Lambda_c^+ \to \Lambda e^+ \nu_e$	3.6 ± 0.4
Ξ_c^0	$\Xi_c^0 \to \Xi^- e^+ \nu_e$	1.04 ± 0.24

SEMI-LEPTONIC DECAYS OF OPEN HEAVY-FLAVOR HADRONS

- Weak decays to hadrons and $l-v_1$ pair
 - Heavy flavor (HF) electrons, non-photonic electrons (NPE)
- Method:
 - Identification of inclusive electrons
 - Fraction of electrons from other sources (decay of π⁰, conversion electrons) estimated from simulation

• Pros:

- Detection and identification of electrons relatively easy
- Possible even without precise tracking
 - Only combined HF electrons from both c and b-hadrons
- Reasonably high branching ratios
- Cons:
 - High background levels
 - Distinguishing decays of c and b-hadrons challenging
 - Does not provide full information about mother kinematics

Hadron*	Decay channel	<i>BR</i> [%]
B ⁺	$\mathbf{B}^+ \rightarrow e^+ \nu_e X_c$	10.8 ± 0.4
B^0	$\mathbf{B}^0 \rightarrow e^+ \nu_e X_c$	10.1 ± 0.4
\mathbf{B}_{S}^{+}	$\mathbf{B}_{s}^{+} \rightarrow e^{+} \nu_{e} X^{-}$	9.1 ± 0.8
Λ_b^0	$\Lambda_b^0 \to \Lambda_c^+ l^- \overline{\nu_l}$ anything	10.9 ± 2.2

*Charge conjugate particles are also measured

SEMI-LEPTONIC DECAYS OF OPEN HEAVY-FLAVOR HADRONS

- Weak decays to hadrons and $l-v_1$ pair
 - Heavy flavor (HF) electrons, non-photonic electrons (NPE)
- Method:
 - Identification of inclusive electrons
 - Fraction of electrons from other sources (decay of π⁰, conversion electrons) estimated from simulation
- Pros:
 - Detection and identification of electrons relatively easy
 - Possible even without precise tracking
 - Only combined HF electrons from both c and b-hadrons
 - Reasonably high branching ratios
- Cons:
 - High background levels
 - Distinguishing decays of c and b-hadrons challenging
 - Does not provide full information about mother kinematics

TOPOLOGICAL RECONSTRUCTION OF OPEN HEAVY-FLAVOR HADRONS

- Alternative approach is topological reconstruction of hadronic decays
- Pros:
 - Full information about mother kinematics for open-charm hadrons
- Cons:
 - Need very good spatial resolution
 - Small reconstruction efficiency
 - Need to use machine learning of multivariate analysis methods to optimize topological selection

Hadron*	Decay channel	<i>BR</i> [%]
D ⁺	$D^+ \to K^- \pi^+ \pi^+$	8.98 ± 0.28
D^0	$D^0 \to K^-\pi^+$	3.93 ± 0.04
D_s^+	$D_{S}^{+} \rightarrow \varphi \pi^{+} \rightarrow K^{-}K^{+}\pi^{+}$	2.27 ± 0.08
Λ_c^+	$\Lambda_c^+ \rightarrow \mathbf{K}^- \pi^+ \mathbf{p}$	6.35 ± 0.33

*Charge conjugate particles are also measured

DCA_{xy} resolution of STAR Heavy Flavor Tracker detector

17.06.202

TOPOLOGICAL RECONSTRUCTION OF OPEN HEAVY-FLAVOR HADRONS

- Alternative approach is topological reconstruction of hadronic decays
- Pros:
 - Full information about mother kinematics for open-charm hadrons
- Cons:
 - Need very good spatial resolution
 - Small reconstruction efficiency
 - Need to use machine learning of multivariate analysis methods to optimize topological selection

Hadron*	Decay channel	<i>BR</i> [%]
D ⁺	$D^+ \to K^- \pi^+ \pi^+$	8.98 ± 0.28
D^0	$D^0 \to K^-\pi^+$	3.93 ± 0.04
D_s^+	$D_s^+ \rightarrow \varphi \pi^+ \rightarrow K^- K^+ \pi^+$	2.27 ± 0.08
Λ_c^+	$\Lambda_c^+ \rightarrow \mathbf{K}^- \mathbf{\pi}^+ \mathbf{p}$	6.35 ± 0.33

• *Charge conjugate particles are also measured

Cartoon of three-body decay topology

CHARM AND BOTTOM QUARK PRODUCTION MODIFICATION IN A+A COLLISIONS

17.06.2022

D MESON NUCLEARMODIFICATIONFACTOR AT STARD° (STAR): Phys. Rev. C 99, 034908, (2019).
T[±] (STAR): Phys. Lett. B 655, 104 (2007).
D (ALICE): JHEP 03, 081 (2016).
H[±] (ALICE): Phys. Lett. B 720, 52 (2013).

Nuclear modification factor:

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N^{\rm pp}/{\rm d}p_{\rm T}}$$

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 STAR data
- D mesons suppressed in **central** Au+Au collisions
 - Suppression of D^0 mesons at high p_T comparable to light flavor hadrons at RHIC and D mesons at LHC
 - Reproduced by models incorporating both radiative and collisional energy losses

Strong interactions between charm quarks and the medium at RHIC energies

17.06.202

D MESON NUCLEAR MODIFICATION FACTOR AT STAR

- Centrality dependence of D mesons R_{AA}
 - Suppression at high $p_{\rm T}$ increases towards more central collisions
 - Low-p_T D⁰ suppressed for all studied centrality classes of Au+Au collisions
- Integrated $R_{AA} < 1$ for D mesons from central to peripheral collisions

D MESON NUCLEAR MODIFICATION FACTOR AT ALICE

- Nuclear modification factor of prompt D mesons measured by ALICE in Pb+Pb collisions at 5.02 TeV
- Similar level of suppression of D mesons in central heavy-ion collisions at the LHC and RHIC
 - In overlapping $p_{\rm T}$ region

D (ALICE): JHEP10(2018)174

NON-PHOTONIC ELECTRONS MEASURED BY ALCIE

- Nuclear modification factor non-photonic electrons measured by ALICE in Pb+Pb collisions at 5.02 TeV
- Strong suppression of NPE in central and semicentral Pb+Pb collisions
- Many models able to describe data well

- Supports energy loss of charm quarks in the QGP
- But how is it with contribution of c quarks and b quarks?

15

NON-PHOTONIC ELECTRONS MEASURED BY STAR

- Ratio of R_{CP} of NPE from decays of open-bottom hadrons over R_{CP} of NPE from decays of opencharm hadrons Au+Au collisions
- Charm quarks are significantly more suppressed compared to bottom quarks in central Au+Au collisions

 One of first strong evidences of mass ordering of heavy quark energy loss in the QGP

NPE (STAR): arXiv:2111.14615 [nucl-ex]

COLLECTIVE FLOW OF HEAVY QUARKS

HARMONIC FLOW

- The initial geometry of the QGP bulk propagates to the azimuthal $p_{\rm T}$ distribution of final state hadrons
- Measured via harmonic flow coefficients (v_n) of the Fourier decomposition of azimuthal distribution of particles:

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)],$$

where φ is the azimuthal angle, $\Psi_{\rm n}$ is the n-th order event plane angle

- Light flavor quarks:
 - Hadronization of asymmetrical QGP bulk
 - Various pressure gradients in different directions
- Heavy flavor quarks:
 - No harmonic flow without presence of QGP expected
 - Can acquire non-zero harmonic flow through interaction with the QGP

Figure by R. Vertesi

17.06.202

ELLIPTIC FLOW OF D⁰ MESONS MEASURED BY STAR

- Elliptic flow of D⁰ and light flavor hadrons measured by STAR in Au+Au collisions at 200 GeV
- Significant harmonic flow of D⁰ mesons observed
- Elliptic flow of charm quarks follow the NCQ scaling

 Charm quarks appear to be very close to local thermal equilibrium with the QGP at RHIC

ELLIPTIC FLOW OF D MESONS MEASURED BY ALICE

- Elliptic flow of D mesons measured by ALICE in Pb+Pb collisions at 5.05 TeV
- Significant harmonic flow of D mesons observed
 - Comparable magnitude at in the overlapping p_{T}
- Several models able to reproduce both v_2 and R_{AA}
 - R_{AA} from slide 15

 Further evidence of strong interactions of charm quarks with the QGP at the LHC

D (ALICE): JHEP10(2018)174

ELLIPTIC FLOW OF NPE MEASURED BY STAR AND ALICE

- Elliptic flow of NPE measured by STAR in Au+Au collisions at 200 GeV (top) and by ALICE in Pb+Pb collisions at 5.05 TeV (bottom)
- Significant elliptic flow of NPE observed at both RHIC and the LHC
 - Similar magnitude at RHIC and the LHC
- Models again suggest strong interactions of the charm quarks with the medium

 Further evidence of strong interactions of charm quarks with the QGP at the LHC

ELLIPTIC FLOW OF NPE MEASURED BY STAR AND ALICE

- Elliptic flow of NPE measured by STAR in Au+Au collisions at 200 GeV (top) and by ALICE in Pb+Pb collisions at 5.05 TeV (bottom)
- Significant elliptic flow of NPE observed at both RHIC and the LHC
 - Similar magnitude at RHIC and the LHC
- Models again suggest strong interactions of the charm quarks with the medium

 Further evidence of strong interactions of charm quarks with the QGP at the LHC

ELLIPTIC FLOW OF NPE FROM DECAY OF OPEN-BOTTOM HADRONS BY ALICE

- Elliptic flow of NPE from decay of open-bottom hadrons measured ALICE in Pb+Pb collisions at 5.05 TeV (bottom)
- Significant elliptic flow observed
- Model incorporating full thermalization of bottom quarks does not describe the data at high $p_{\rm T}$
- Models with substantial interactions of b-quarks with the QGP reproduce data

 Even bottom quark experiences significant energy loss due to interaction with the QGP at the LHC energies

OPEN HEAVY-FLAVOR HADROCHEMISTRY

HADRONIZATION OF QUARKS IN A+A COLLISIONS

Fragmentation

- As a quark propagates through medium (or vacuum) it radiates gluons which then fragment into quark-antiquark pairs
- Those pairs and the original quark then hadronize

Coalescence

- Quark propagating through medium hadronizes with surrounding (anti-)quarks
 - At intermediate hadron $p_{\rm T}$ (2 < $p_{\rm T}$ < 8 GeV/c)
 - Quarks need to be close in kinematic phase space
- More likely to produce **light flavor** baryon (3 quarks) than meson (2 quarks) for given hadron $p_{\rm T}$ compared to vacuum case
 - Due to larger abundance of low $p_{\rm T}$ quarks in medium
- How about heavy-flavor hadrons?

 p/π (STAR): Phys. Rev. Lett. 97, 152301 (2006)

∧_c/d° yield ratio Enhancement at star

Open-charm baryon/meson yield ratio

CENTRALITY DEPENDENCE

- Enhancement of the ratio increases towards central collisions
- Data well described by Catania model with coalescence and fragmentation

 $\begin{array}{l} \wedge_c \mbox{(STAR): Phys. Rev. Lett. 124, 172301, (2020)} \\ p/\pi \mbox{(STAR): Phys. Rev. Lett. 97, 152301 (2006)} \\ \wedge /K \mbox{(STAR): Phys. Rev. Lett. 108, 072301 (2012)} \\ \mbox{Catania: Eur. Phys. J. C 78, 348, (2018)} \end{array}$

D⁰ YIELD RATIO ENHANCEMENT AT STAR

Open-charm baryon/meson yield ratio

CENTRALITY DEPENDENCE

- Enhancement of the ratio increases towards central collisions
- Data well described by Catania model with coalescence and fragmentation

$p_{\rm T}$ DEPENDENCE

- Significant enhancement with respect to **PYTHIA** prediction
- Coalescence models closer to data than **PYTHIA**

Importance of coalescence and fragmentation hadronization of charm quarks

Jan Vanek, WEJCF 2022

 \wedge_{c} (STAR): Phys. Rev. Lett. 124, 172301, (2020) p/π (STAR): Phys. Rev. Lett. 97, 152301 (2006) ∧ /K (STAR): Phys. Rev. Lett. 108, 072301 (2012) Ko et al.: Phys. Rev. C 101, 024909, (2020)

Catania: Eur. Phys. J. C 78, 348, (2018) Tsinghua: arXiv:1805.10858, (2018) Rapp et al.: Phys. Rev. Lett. 124, 042301 (2020) Cao et al.: arXiv:1911.00456, (2019)

∧_c/d⁰ yield ratio Enhancement by alice

- The enhancement is observed also by ALICE in Pb+Pb collisions at 5.02 TeV
- The measured R_{AA} suggests mass ordering of suppression of open-charm hadrons

 Indicates importance of coalescence hadronization of charm quarks at the LHC

Λ_c/D^0 YIELD RATIO ENHANCEMENT BY ALICE IN p+p

- Enhancement of the ratio in p+p collisions with respect to expected value, e.g. from PYTHIA
- The fragmentation ratios are typically taken from e⁺e⁻ collisions
 - Very clear environment
- Proton-proton collisions are probably different
 - Color strings
- New approach to hadronization process in p+p collisions
 - "Color reconnection mechanism beyond leading color" JHEP 2015, 3 (2015)
- Do we really understand charm hadronization in p+p collisions which are used as reference to A+A?

Physics Letters B 829, 137065

Ξ_c/D^0 YIELD RATIO ENHANCEMENT BY ALICE IN p+p

- Enhancement of the ratio in p+p collisions with respect to expected value, e.g. from PYTHIA
- The fragmentation ratios are typically taken from e⁺e⁻ collisions
 - Very clear environment
- Proton-proton collisions are probably different
 - Color strings
- Reasonably re-produced by Catania model incorporating fragmentation and coalescence hadronization
 - Coalescence in p+p collisions?
- Do we really understand charm hadronization in p+p collisions which are used as reference to A+A?

NON-PROMPT D⁰ MESONS MEASURED BY ALICE

- Non-prompt D⁰ mesons are used as tool to access information about open-bottom hadron production
- Selection of D⁰ mesons which are far from primary vertex
 - Combined decay length of open-bottom hadrons (ca. 450 $\mu m)$ and that of D^0 (122.9 \pm 0.4 $\mu m)$
- LGR model provides good description of observed R_{AA} ratio
- Coalescence hadronization is important for c and b quarks and the energy loss experienced by charm quarks is different from that of bottom quarks

arXiv:2202.00815 [nucl-ex]

STRANGENESS ENHANCEMENT

- Another very important phenomenon observed in heavy-ion collisions is strangeness enhancement
- Protons and neutrons do not contain any (valence) strange quarks
- Fragmentation of gluons
 - Present in both p+p and Au+Au
- Strange quark-antiquark pairs from QGP
 - Only in Au+Au
 - This additional mechanism leads to enhanced strangeness production per participant in Au+Au with respect to p+p for light hadrons

• How about strange heavy-flavor hadrons?

- D_s/D^0 yield ratio as a function of p_T
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to PYTHIA baseline
- Comparison to models:
 - Catania model with only coalescence describes data for $p_{\rm T} > 4 {\rm ~GeV}/c$
 - Catania model with coalescence and fragmentation describes data for lower $p_{\rm T}$
 - Tsinghua model with sequential coalescence hadronization is closer to data for both low and high p_T
- Importance of coalescence hadronization of charm quarks with enhanced strangeness production

TOTAL CHARM PRODUCTION CROSS SECTION

- Total charm production cross section per binary collision in Au+Au extracted from the measurements of open-charm hadrons
 - *The Λ_c cross-section is derived using the Λ_c/D^0 yield ratio
- The Au+Au result is consistent with that measured in p+p collisions within the uncertainties
- Redistribution of charm quarks among open –charm hadron species

Coll. system	Hadron	${ m d}\sigma_{_{ m NN}}/{ m d}y$ [µb]
Au+Au at 200 GeV Centrality: 10-40%	\mathbf{D}^0	$41\pm1\pm5$
	D^{\pm}	$18 \pm 1 \pm 3$
	D_{s}	$15 \pm 1 \pm 5$
	\wedge_{c}	78 ± 13 ± 28 *
	Total:	152 ± 13 ± 29
p+p at 200 GeV	Total:	$130 \pm 30 \pm 26$

Jan Vanek, WEJCF 2022

erratum: Phys. Rev. Lett. 121, 229901 (2018). p+p (STAR): Phys. Rev. D 86 072013, (2012)

NON-PROMPT D_s mesons measured by alice

- Access to information about strange open-bottom hadrons
- Same procedure as in case of non-prompt D⁰ mesons
- Non-prompt D_s mesons are less suppressed compared to prompt D_s mesons
 - Lower energy loss of bottom quark compared to charm quark
- Low p_T non-prompt D_s are enhanced with respect to nonprompt D⁰ mesons
 - Strangeness enhancement combined with coalescence hadronization of charm quarks
- Charm quarks loose more energy in QGP than bottom quarks
- Non-prompt Ds mesons are enhanced due to strangeness enhancement and coalescence hadronization

OPEN-CHARM MESONS AS A PROBE OF INITIAL STATE OF HEAVY-ION COLLISIONS

D^0 DIRECTED FLOW

• Hydrodynamics Chatterjee, Bozek: P

Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

- Difference between the tilt of the bulk and the longitudinal density profile of HF production
- Larger slope dv₁/dy of charm quarks than light flavor quarks

Das et. al., Phys Lett B 768, 260 (2017)

Initial EM field from passing spectators

- Predicted negative dv_1/dy slope for D^0 and positive one for $\overline{D^0}$
- Hydrodynamics + EIN field Chatterjee, Bozek: Phys. Lett. B 798, 134955, (2019).
 - Negative dv_1/dy slope for both D^0 and $\overline{D^0}$
 - Larger magnitude of slope for D^0 than $\overline{D^0}$

D⁰ DIRECTED FLOW

- First evidence of non-zero directed flow (v_1) of D^0 and $\overline{D^0}$ as a function of rapidity (y)
- Negative dv_1/dy slope for both D^0 and $\overline{D^0}$
 - Larger slope than for kaons
- No EM induced splitting observed within the uncertainties
- Measurement of D⁰ directed flow can be used to constrain the difference between the tilt of the QGP bulk and the longitudinal density profile of HF production

D⁰ (STAR): Phys. Rev. Lett. 123, 162301 (2019). Kaons (STAR): Phys. Rev. Lett. 120, 062301 (2018).

SUMMARY

- Charm quarks loose significant fraction of their energy in the QGP
 - Low values of R_{AA} of D mesons
 - Large collective flow of D mesons
- Charm quarks are close to thermal equilibrium with the medium
 - Large collective flow of D mesons
- Significant contribution of coalescence hadronization for charm quarks
 - Re-distribution of charm quarks among open-charm hadron species in A+A collisions with respect to p+p collisions
- Charm quarks can be used as a probe of initial EM field and initial tilt of the QGP bulk
 - Non-zero directed flow of D⁰ mesons
- Bottom quarks loose less energy in QGP than charm quarks
 - Nuclear modification factors and yields of NPE from decays of open-bottom hadrons
 - Nuclear modification factors of non-prompt D mesons
- Bottom quarks loose some energy in the medium at the LHC
 - NPE from decays of open-bottom hadrons have significant elliptic flow

OUTLOOK

- sPHENIX experiment at RHIC
 - Expected to start taking data in 2023
 - Good spatial resolution will allow reconstruction of open heavy-flavor hadrons
 - E.g. possible to obtain high precision p+p reference for Au+Au data
- ALICE experiment
 - Recent upgrades to ALICE Inner Tracking System (ITS) will allow more precise measurements of open-heavy flavor hadrons
 - Baryons in Pb+Pb collisions as a function of both $p_{\rm T}$ and collision centrality
 - Planes to upgrade ALICE to giant silicon tracker utilizing Monolithic Active Pixel Sensors
 - Access to multi-charmed baryons, bottom-charmed hadrons and other exotic open-heavy flavor hadrons

17.06.202

THANK YOU FOR ATTENTION

